登陆注册
3236900000009

第9章

毕达哥拉斯无法解释这种怪现象,又不敢承认2是一种新的数,因为他的全部“宇宙”理论,都奠基在整数的基础上。他下令封锁消息,不准希伯斯再谈论2,并且警告说,不要忘记了入学时立下的誓言。

原来,毕达哥拉斯学派是一个非常着名的科学会社,也是一个非常神秘的宗教团体。每个加入学派的人都得宣誓,不将学派里发生的事情告诉给外人。谁要是违背了这个规矩,任他逃到天涯海角,也很难逃脱无情的惩罚。

希伯斯很不服气。他想,不承认2是数,岂不等于是说正方形的对角线没有长度吗?简直是睁着眼睛说瞎话!为了坚持真理,扞卫真理,希伯斯将自己的发现传扬了开去。

毕达哥拉斯恼羞成怒,给希伯斯罗织了一个“叛逆”的罪名,决定严加“惩罚”。希伯斯听到风声后连夜逃走了,他东躲西藏,最后逃上了一艘海船离开了希腊,没想到在茫茫大海上,还是遇到了毕达哥拉斯派来追他的人……真理是打不倒的。毕达哥拉斯能够“惩罚”希伯斯,却“惩罚”不了2。这位神秘的“天外来客”不但逍遥法外,反而引来更多的同伴:3、5、7……频繁地出现在各类数学问题中,使得古希腊数学家伤透了脑筋……直到最近几百年,数学家们才弄清楚,2确实不是整数,也不是分数,而是一种新的数,叫做无理数。

无理数也就是无限不循环的小数。2是人类最先认识的一个无理数。1971年10月,一位美国数学家在电子计算机上运算了475个小时,求出了2小数点后的100082位数,得到的仍然是个近似值。分析这样一个精确的近似值,人们仍然看不到2的小数部分有一丝循环的迹象。

毕达哥拉斯扮演了一个可悲的角色。他不知道,无理数概念的产生,是数学史上一个重大的发现,也是整个毕达哥拉斯学派的光荣。

神秘的两栖物

着名数学家华罗庚说过:“数是数(shǔ)出来的,一个一个地数(shǔ),因而出现了1,2,3,4,5……”其实,不仅是自然数,其他一些数的引入,也都与物体的度量有关。分数的引入,与度量物体的细小部分有关;无理数的引入,与度量正方形对角线这类长度有关……16世纪时,数学家们遇到了一种奇怪的数,这种数与物体的度量无关,而且在很长的一段时间里,谁都没能在生活中找到一样事物,说它需要用这种数来刻画。

例如,意大利数学家卡当就曾遇见过这种奇怪的数。有一次,他动手解答一道很简单的数学题:“两个数的和是10,积是40,问这两个数各是多少?”

卡当设第一个数是X,由于两个数的和是10,他将第二个数记作(10-X);因为两个数的积是40,于是有X(X-10)=40,即X2-10X+40=0。

这是一个一元二次方程。数学家们早就知道了这类方程的求根公式,只要把方程的系数1、-10、40代入公式里,马上就可以算出方程的两个答案来。可是,当卡当把1、-10、40代入公式后,却算出了两个令人困惑不解的怪东西:5+-15和5--15。

卡当为什么困惑不解呢?

原来,他遇上了负数开平方的情形。“”是开平方运算的符号,如32=9,则9=3。人们一直认为,负数是不能开平方的,不仅如此,当时的人们对一些正数开平方,如2、15,也认为“仅仅是些记号而已”,不承认它们是一种数。因此,讨论-15就更加没有意义了。

卡当想,既然“15仅仅是些记号而已”,那么,何尝不把-15也看作“是些记号而已”

呢?他鼓足勇气,“不管良心会受到多大的责备”,把那两个怪东西当作是两个数,代入题中进行了演算。瞧:

(5+-15)+(5--15)=10,(5+-15)×(5--15)=40,这两个怪东西正好是题目要求的数!

从这个意义上说,这两个怪东西应该是一种数。可是,这是一种什么样的数呢?卡当没有弄清楚,17世纪的数学家们,也没有弄清楚。他们觉得这种数不像其他的数那样“实在”,有一种虚无缥缈的味道,于是就起了个名字叫“虚数”。

尽管虚数有了数的名称,许多数学家仍然拒绝承认它。例如大数学家牛顿就曾严厉指责虚数缺乏“实在”的物理意义。大数学家莱布尼兹更有趣,他说:虚数是“理想世界的奇异创造”,是一个“介于存在与不存在之间的两栖物”。

18世纪下半叶,大数学家欧拉最先用i这个记号来表示虚数单位,例如,-1可以记作i,-15可以记作15i。但是,欧拉也没有弄清虚数到底是个什么东西。他说:“一切形如-1、-2的数学式,都是不可能有的、想像的数,……它们既不是什么都是,也不比什么都不是多些什么,更不比什么都不是少些什么。它们纯属虚构。”

其实,虚数并不是虚构的数,其中的秘密,数学家们直到19世纪才弄清楚。有人用平面上的点来表示虚数,对虚数的性质作出了合理的解释,虚数也就逐渐为大家所接受。在现在高中课本里,对虚数的性质作了详细的叙述,到时候,读者们自会去作一番探幽揽胜的巡游,这里就不多加介绍了。

需要指出的是,有了虚数之后,整个数系也就完备了。除了0不能作分母以外,任何两个数都可以相加、相减、相乘、相除,以及乘方和开方了。

度天下之方圆

有一个气魄宏伟的动人故事,叫大禹治水。

故事发生在遥远的公元前21世纪,那时,我国的黄河流域经常“洪水滔天”。洪水吞没田园,冲毁房舍,使人们流离失所。于是,各个部落的人们团结起来,与大自然展开了一场艰苦卓绝的斗争。

起初,这场斗争由大禹的父亲鲧来指挥。鲧一心想把事情办好,但采用的方法不对,他一味强调,“水来土掩”,哪里有洪水就派人到哪里去堵,结果越堵水患越严重。

鲧治水失败后,大禹挺身而出,担负起领导治水的重任。他认为要制服水患,就必须因势利导,根据河流的走势宣泄水流。为了规划出一套正确的治水方案,大禹不辞辛劳地爬山涉水,实地勘察山川形势。他三过家门而不入,领导人们开山劈岭,疏浚河道,广修沟渠,奋战12年,终于“开九州,通九道”,制服了水患,谱写了一曲人定胜天的凯歌。

不具备相当的数学知识,就很难完成这项规模巨大的工程。所以,史书在记载大禹治水的动人事迹时,都没有忘记加上一句,大禹“左准绳,右规矩”。意思是大禹随身携带着规、矩这两样测量工具。

规矩是什么样的奇妙工具?

竟能用来“望山川之形,定高下之势”,在改造大自然的斗争中大建奇功?

在山东省嘉祥县一座古代建筑的石室造像中,依稀可见规矩的模样。图中有两位古代神话中我们远古祖先的形象,一位叫伏羲,一位叫女娲。伏羲手中的物体就是规,它呈两脚状,与现在的圆规相似;女娲手中的物体叫做矩,它呈直角拐尺形。

原来,规就是画圆用的圆规,矩就是折成直角的曲尺。矩由长短两把尺合成,短尺叫勾,长尺叫股,可以用来画直线或者作直角。

公元前11世纪,有位叫商高的古代数学家,曾详细介绍了用矩的方法。他说:

“把矩平放在地上,可以定出绳子的垂直;把矩竖立起来,可以测量物体的高度;把矩倒立过来,可以测量物体的深度;把矩平卧在地上,可以测量两地之间的距离。矩旋转一周,就形成了一个圆形,两个矩合拢起来,就形成了一个方形。

“知天文识地理的人是很有学问的,而这种学问就来自勾股测量,勾股测量又依赖于矩的应用。矩与数结合起来,就可以设计和制作天下的万物。”

瞧,矩的用途是多么广泛和灵活,我们的祖先又将它运用得多么出神入化啊。

规矩究竟发明于何时,已经很难考察了,但它们起源于极遥远的古代,却是无庸置疑的。在我国最早的文字甲骨文中,已有了规、矩这两个字,其中的规字,就很像手执圆规画圆的样子。到了春秋战国时期,书中关于规矩的论述更是多得不胜枚举。墨子说过:造车的工匠“执其规矩,以度天下之方圆”;孟子说过:即使是离娄那样眼光锐利的人,即使是鲁班那样心灵手巧的工匠,“不以规矩,不能成方圆”。可见至少从那时起,规与矩的应用在我国民间已经很普遍了。

测算地球周长

公元前3世纪,有位古希腊数学家叫埃拉托斯芬。他才智高超,多才多艺,在天文、地理、机械、历史和哲学等领域里,也都有很精湛的造诣,甚至还是一位不错的诗人和出色的运动员。

人们公认埃拉托斯芬是一个罕见的奇才,称赞他在当时所有的知识领域都有重要贡献,但又认为,他在任何一个领域里都不是最杰出的,总是排在第二位,于是送他一个外号“贝塔”。意思是第二号。

能得到“贝塔”的外号是很不容易的,因为古代最伟大的天才阿基米德,与埃拉托斯芬就生活在同一个时代!他们两人是亲密的朋友,经常通信交流研究成果,切磋解题方法。大家知道,阿基米德曾解决了“砂粒问题”,算出填满宇宙空间至少需要多少粒砂,使人们瞠目结舌。大概是受阿基米德的影响吧,埃拉托斯芬也回答了一个令人望而生畏的难题:地球有多大?

怎样确定地球的大小呢?埃拉托斯芬想出一个巧妙的主意:测算地球的周长。

埃拉托斯芬生活在亚历山大城里,在这座城市正南方的785公里处,另有一座城市叫塞尼。塞尼城中有一个非常有趣的现象,每年夏至那天的中午12点,阳光都能直接照射城中一口枯井的底部。

也就是说,每逢夏至那天的正午,太阳就正好悬挂在塞尼城的天顶。

亚历山大城与塞尼城几乎处于同一子午线上。同一时刻,亚历山大城却没有这样的景象。太阳稍稍偏离天顶的位置。一个夏至日的正午,埃拉托斯芬在城里竖起一根小木棍,动手测量天顶方向与太阳光线之间的夹角,测出这个夹角是72°,等于360°的1/50。

由于太阳离地球非常遥远,可以近似地把阳光看作是彼此平行的光线。于是,根据有关平行线的定理,埃拉托斯芬得出了1=2的结论。

在几何学里,2这样的角叫做圆心角。根据圆心角定理,圆心角的度数等于它所对的弧的度数。因为2=1,它的度数也是360°的1/50,所以,图中表示亚历山大城和赛尼城距离的那段圆弧的长度,应该等于圆周长度的1/50。也就是说,亚历山大城与塞尼城的实际距离,正好等于地球周长的1/50。

于是,根据亚历山大城与塞尼城的实际距离,乘以50,就算出了地球的周长。埃拉托斯芬的计算结果是:地球的周长为39250公里。

这是人类历史上第一次进行这样的测量。

联想到埃拉托斯芬去世1800年后,仍然有人为地球是圆的还是方的而喋喋不休时,埃拉托斯芬高超的计算能力和惊人的胆识益发受到人们的称颂。

几何学的一大宝藏

100多年前,一位心理学家做了个有趣的实验。他精心设计出许多不同的矩形,然后邀请许多朋友来参观,请他们各自选择一个自认为最美的矩形。结果,592位来宾选出了4个矩形。

这4个矩形看上去协调、匀称、舒适,确实能给人一种美的享受。那么,这种美的奥秘在哪里呢?

心理学家动手测量了它们的边长,发现它们的长和宽分别是:

5、8;8,13;13,21;21,34。而这些边长的比值,又都出乎意料地接近了0618。

58≈0625;813≈0615;1321≈0619;2134≈0618。

这是一次偶然的巧合吗?

选择一扇看上去最匀称的窗户,量一量它的各个边长吧;选一册装帧精美的图书,算一算它边长的比值吧……只要留心观察,就不难时时发现“0618”的踪迹。有经验的报幕员上台亮相,决不会走到舞台的正中央,而是站在近乎舞台长度的0618倍处,给观众留下一个美的形象……哪里有“0618”,哪里就闪烁着美的光辉。连女神维纳斯的雕像上也都烙有“0618”的印记。如若不信,不妨去算一算这尊女神身长与躯干的比值,看看是不是接近于0618?而一般人身长与躯干之比,大约只有058。难怪芭蕾舞演员在翩翩起舞时,要不时地踮起脚尖呢。

这些都是偶然的巧合吗?当然不是。数学家会告诉你,它们遵循着数学的黄金分割律。

公元前4世纪,有位叫攸多克萨斯的古希腊数学家,曾经研究过这样一个问题:“如何在线段AB上选一点C,使得AB∶AC=AC∶CB?”这就是赫赫有名的黄金分割。

C点应该选择在什么地方呢?不妨假设线段AB的长度是1C,点到A点的长度是X,则C点到B点的长度是(1-X),于是1∶X=X∶(1-X)解得X=-1+52。

舍去负值,得X=5-12≈0618。

“0618”是唯一满足黄金分割的点,叫做黄金分割点。

黄金分割冠以“黄金”二字,足见人们对它的珍视。艺术家们发现,遵循黄金分割来设计人体形象,人体就会呈现最优美的身段,音乐家们发现,将手指放在琴弦的黄金分割点处,乐声就益发宏亮,音色就更加和谐;建筑师们发现,遵循黄金分割去设计殿堂,殿堂就更加雄伟庄重,去设计别墅,别墅将更使人感到舒适;科学家们发现,将黄金分割运用到生产实践和科学实验中,能够取得显着的经济效益……黄金分割的应用极其广泛,不愧为几何学的一大宝藏。

送给外星人看

几何学里有一个非常重要的定理,在我国叫勾股定理,在国外叫毕达哥拉斯定理,相传毕达哥拉斯发现这个定理后欣喜欲狂,宰了100头牛大肆庆贺了许多天,因此这个定理也叫百牛定理。

勾股定理的大意是:任意画一个直角三角形,它的两条直角边的平方和,一定会等于斜边的平方。这个定理精确地刻画了直角三角形3条边之间的数量关系,以它为基础,还可以推导出不少重要的数学结论来。

勾股定理不仅是最古老的数学定理之一,也是数学中证法最多的一个定理。几千年来,人们已经发现了400多种不同的证明方法,足以编成厚厚的一本书。实际上,国外确实有一本这样的书,书中收集有370多种不同的证法。在为数众多的证题者中,不仅有着名的数学家,也有许多数学爱好者。美国第20任总统伽菲尔德,就曾发现过一种巧妙的证法。

伽菲尔德的证法很有趣。他首先画两个同样大小的直角三角形,然后设法组成一个梯形。根据梯形面积的计算公式,整个图形的面积为S=a+b2(a+b)=12(a2+b2+2ab)。

另一方面,根据三角形面积计算公式,整个图形的面积为S=12ab+12ab+12c2=12(2ab+c2)。

即a2+b2=c2。

据说,世界上最先证明勾股定理的人,是古希腊数学家毕达哥拉斯,但谁也未见过他的证法。

目前所能见到的最早的一种证法,属于古希腊数学家欧几里得,他的证法采用演绎推理的形式,记载在世界上数学名着《几何原本》

里。

在我国,最先明确地证明勾股定理的人,是三国时期的数学家赵爽。

赵爽的证法很有特色。首先,他作4个同样大小的直角三角形,将它们拼成设定的形状,然后再着手计算整个图形的面积。显然,整个图形是一个正方形,它的边长是C,面积为C2。另一方面,整个图形又可以看作是4个三角形与1个小正方形面积的和。

同类推荐
  • 提高思考记忆能力(学生综合素质提高手册)

    提高思考记忆能力(学生综合素质提高手册)

    青少年是祖国的未来和希望,培养综合素质高的接班人是我们教育的天职。当今社会,我们国家在现代化发展的道路上正面临着极大的机遇和巨大的挑战。要应对挑战就必须使未来的建设者们具备全面的素质;不但要有自然科学的知识,同时也必须掌握人文科学的知识。只有具备综合素质的人,才能称得上是合格的人才。一个民族的全体国民要想全面提高人文素质,就必须以提高综合素质为突破口。本选题是为青少年量身定做的综合素质提高自助读本。
  • 爱情精选

    爱情精选

    我们中小学生必须要加强阅读量,以便提高自己的语文素养和写作能力,以便广开视野和见识,促进身心素质不断地健康成长。但是,现在各种各样的读物卷帙浩繁,而广大中小学生时间又十分有限,因此,找到适合自己阅读的读物,才能够轻松快速地达到阅读的效果。
  • 新课标最佳阅读:史记菁华

    新课标最佳阅读:史记菁华

    《史记》不但是我国历代正史的鼻祖,也是一部文学巨著。常读《史记》,可以训练欣赏文学的能力和写作文章的技巧。但《史记》的卷帙庞大,内容广泛,遍及天文、地理、术算各方面,一般人若要全读,分量实在太多,时间和精神往往不能应付。所以,删除赘文,撷取菁华,是个必要的工作,可以便利人们阅读和欣赏,《史记菁华》正是这部文史巨著的节本。
  • 哈佛家教精华读本:启迪父母的教子智慧

    哈佛家教精华读本:启迪父母的教子智慧

    《启迪父母的教子智慧:哈佛家教精华读本》是以哈佛素质教育理念为核心,分别从智力开发、激发求知欲、开发记忆力、训练思维力、培养创造力、开发艺术才能、培养动手技能等十四十方面展开阐述,借鉴生动有趣的故事,向广大父母们深入全面地展示了哈佛的育人哲理,从而帮助父母掌握正确的教子方法,纠正家教中的错误。
  • 扫除成长心理障碍(培养学生心灵成长的经典故事)

    扫除成长心理障碍(培养学生心灵成长的经典故事)

    在这套丛书里,我们针对青少年的心理特点,专门选择了一些特殊的故事,分别对他们在这一时期将会遭遇的情感问题、生活问题、学习问题、交友问题以及各种心理健康问题,从心理学的角度进行剖析和讲解,并提出了解决问题的方法和措施,以供同学们参考借鉴。
热门推荐
  • 不凶不吼教出好孩子

    不凶不吼教出好孩子

    孩子有如一棵小树,需要家庭的温暖来呵护,需要赏识的阳光来照耀。每一个孩子都是一个珍贵的存在,他具有独立的个性,也应有最适合他的教育方式。然而在现实生活中,我们经常会看到有的孩子对父母的批评不以为然,对表扬也毫不在意,父母的话似乎起不到一点作用了。造成这种恶果的原因是,在孩子还小的时候,父母控制不住自己的情绪,企图用大吼大叫的方式来驯服孩子。实践证明,用冷静的方式对孩子进行管教,远远胜过大吼大叫的教育方式。家长如果能把精力放在控制自己的行为上,而不是控制孩子的行为,得到的教育结果会出乎意料地好。
  • 腹黑大神的医师妻

    腹黑大神的医师妻

    被众多大神的粉丝追杀,结局一对一亲们有任何意见和建议,她是一个计算机系的计算机小白,他却是一个顶着校草头衔的冷漠帅哥。老虎不发威,人前,你们还当我是病猫。不要啊,我不要再网恋!什么?是她主动的?不可能?什么?还一起双修?游戏中,欢迎留言,谁没有双修过,你们等着,谢谢!,有谁告诉她。本文是网游文,纳尼,大神没有?我连名字都没有看清啊…只是网恋失恋以后被人拉进游戏,就是大神么?可不可以不要救我,为什么会在游戏里和大神有绯闻?怎么发威?当然是逃啦!可是谁来告诉她,他却是一个法律系的IT高手;她是一个硬把西施穿成东施的邋遢美女,眼前那个发着赤裸裸的RMB光辉的人,她是一个连跑位都不会的悲催奶妈,他却是第一个满级的游戏大神不就是双修么,让我死了吧…
  • 山狼海贼

    山狼海贼

    故事发生在“文革”期间辽东半岛—座临海小城镇里,主人公是四个二十多岁的“海碰子”。无论是性情暴躁、不乏狡黠且又敢作敢为的刀鱼头,还是矫健英俊、感情丰沛、外刚内柔的马里,以及不时卖弄小聪明、行止有些委琐却也情有独钟的三条腿和相貌丑陋、憨实平和却做出惊天举动的大龇牙,面对无垠的大海,尽显其率真本性,没有虚伪矫饰,没有倾轧攻汗。只有对平静生活的向往和对性与爱的憧憬,以及亲如手足、肝胆相照的友情。
  • 缘来是妃

    缘来是妃

    苏暮绾在见义勇为意外落水之后居然还活着!还让她遇见了南平版的F4:一个慕容似笑非笑能秒杀一群花痴,一个兰乔自认风流的雅痞,一个青贮满腹经纶闷骚书生,还有一个冷面仁心的冷幽,美男艳遇不断,她频频出意外,没想到还是落了个“缘来是妃”的结局。情节虚构,请勿模仿!
  • 鬼楼奇闻

    鬼楼奇闻

    我是个普通的大学生。我的梦想其实很平凡,不要求轰轰烈烈的人生,因为那样子会使人变得很累,人的欲望无穷无尽,很少人能做到急流勇退。唯一希望的就是找份平淡的工作和我青梅竹马的爱人乐梦永远生活下去。有一天,乐梦告诉我“你们知道我们学校的鬼楼四号楼么。想到里面去看看么?”我跟着去了。本以为是增进感情的一次冒险,差点成了我和她之间的永别……
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 写给孩子看的世界地理

    写给孩子看的世界地理

    这本书是为下面这些孩子写的:他们认为天堂就在天上;地狱就在地下;从来没有听说过伦敦或巴黎,认为“丹”这个单词仅仅是指一种狗。这本书以一个旅行者的视角来讲述我们生活的这个世界——不过这位旅行者并不想把这本书写成旅行手册。这本书希望向孩子们展示他们目力未所及的世界,“从卡拉马祖到廷巴克图”。这本书希望孩子们不仅仅能知道世界七大奇迹,还能知道更多更多的世界奇迹和世界之最。我小的时候,生活在新英格兰地区。有一年过感恩节,我们烤了五种不同的派和一种馅饼,有苹果派、桃子派、红莓派、蛋奶……
  • 穿为贱婢压六宫

    穿为贱婢压六宫

    爱情,兄弟情,姐妹情,孰重孰轻?当你与自己的姐妹或者是兄弟爱上同一个人的时候,你,会如何抉择?华丽丽的宫斗即将上演~~~女主获得最终胜利~~~穿越就穿越了,古代就古代,可是为什么还是古代的皇宫,穿成一个人人可以踩在脚底下的宫女呢?那身份成谜,却对自己细心周到青衣的男子到底是谁;皇后说的那番话又是什么意思;爱上君王是该还是不该?她不知道。她只知,为了爱人,为了生存,只能站到风头浪尖去拼出一条活路。言官叱责如何?罪孽深重又如何?且看她在这宫中搏出一片天地!第一次写宫斗的文,简介不会写,亲相信某樱的话就花几秒钟点进去看一些章节吧~~~~收藏和票票和留言是写作的动力,无限期待中~~~【关于更新】遇到了很多看官们都在问更新的问题,这里樱统一地回答:本文一般情况下(特殊情况会标明),一天更新两次。PS:本文长期征求简介,写了这么多了,大概的意思相信亲已经看出个门道了,能帮樱写简介的话就大恩不言谢,樱实在是不会写简介,汗~~~
  • 东宫有本难念的经

    东宫有本难念的经

    宝庆十九年春,大佑国皇太子大婚,大将军之女入主东宫。一个不是淑女的将门千金遭遇一个不是文韬武略的中庸太子,到底是佳偶天成,还是冤家路窄?成婚一年不足,太子忽然休妻。迷影重重,生死茫茫,这样一来,还是不是大团圆结局?
  • 独宠迷糊小丫头:误陷花心恶男

    独宠迷糊小丫头:误陷花心恶男

    杀手世家的独生女终于可以分派任务了,可是第一次任务就是要暗杀一家跨国集团的总裁,听说这个总裁在亚洲有很神秘的背景。不过没关系,她喜欢挑战最强的!第一次去任务就失败,她被他啃得满身都是吻痕。再次在故障的电梯里,他双臂将她挡在身前。然后,他像猎人一样守候着她的光临,识穿了她的身份,并要胁她做他的女人。结果,她任务完成不了,拍拍屁股想一走了之。他拦在她面前,露出邪魅的笑,“等等,谁说你可以走了?……”