登陆注册
3236900000008

第8章

应该怎样限制几何作图工具呢?他们认为,几何图形都是由直线和圆组成的,有了直尺和圆规,就能作出这两样图形,不需要再添加其他的工具。于是规定在几何作图时,只准许使用圆规和没有刻度的直尺,并且规定只准许使用有限次。

由于有了这样一个规定,一些普普通通的几何作图题,顷刻间身价百倍,万众瞩目,有不少题目甚至让西方数学家苦苦思索了2000多年。

尺规作图特有的魅力,使无数的人沉湎其中,乐而忘返。连拿破仑这样一位威震欧洲的风云人物,在转战南北的余暇,也常常沉醉于尺规作图的乐趣中。有一次,他还编了一道尺规作图题,向全法国数学家挑战呢。

拿破仑出的题目是:“只准许使用圆规,将一个已知圆心的圆周4等分。”

由于圆心O是已知的,求出这个题目的答案并不难。

我们可以在圆周上任意选一点A,用圆规量出OA的长度,然后以A点为圆心画弧,得到B点;再以B点为圆心画弧,得到C点;再以C点为圆心画弧,得到D点。这时,用圆规量出AC的长度,再分别以A点和D点为圆心画两条弧,得到交点M。接下来,只要用圆规量出OM的长度,逐一在圆周上划分,就可以把圆周4等分了。

如果再增添一把直尺,将这些4等分点连接起来,就可以得到一个正4边形。由此不难看出,等分圆周与作正多边形实际上是一回事。

只使用直尺和圆规,怎样作出一个正5边形和正6边形呢?

这两个题目都很容易解答,有兴趣的读者不妨试一试。

不过,只使用直尺和圆规,要作出正7边形可就不那么容易了。别看由6到7,仅仅只增加了一条边,却一跃成为古代几何的四大名题之一。尺规作图题就是这样变化莫测。

这个看上去非常简单的题目,曾经使许多着名数学家都束手无策。后来,大数学家阿基米德发现了前人之所以全都失败了的原因:正7边形是不能由尺规作出的。阿基米德从理论上严格证明了这一结论。

那么,采用尺规作图法,究竟有哪些正多边形作得出来,有哪些作不出来呢?

有人猜测:如果正多边形的边数是大于5的质数,这种正多边形就一定作不出来。

17是一个比5大的质数,按上面这种说法,正17边形是一定作不出来的。在过去的2000年里,确实有许多数学家试图作出正17边形,但无一不遭受失败。岂料在1796年,18岁的大学生高斯居然用尺规作出了一个正17边形,顿时震动了整个欧洲数学界。

这件事也深深震动了高斯,使他充分意识到自己的数学能力,从此决心献身于数学研究,后来终于成为一代数学大师。

高斯还发明了一个判别法则,指出什么样的正多边形能由尺规作出,什么样的正多边形则不能,圆满地解决了正多边形的可能性问题。高斯的判别法则表明,能够由尺规作出的正多边形是很少的,例如,在边数是100以内的正多边形中,能够由尺规作出的只有24种。

有趣的是,正7边形的边数虽少,却不能由尺规作出;而正257边形,边数多得叫人实际上很难画出这样的图形,却一定可由尺规作出。1832边形,边数多得叫人实际上很难画出这样的图形,却一定可由尺规作出。1832年,数学家黎克洛根据高斯指出的原则,解决了正257边形的作图问题。他的作图步骤极其繁琐,写满了80页纸,创造了一项“世界纪录”。

不久,德国人赫尔梅斯又刷新了这个纪录。他费了10年功夫,解决了正65537有的作图问题。这是世界上最繁琐的尺规作图题。据说,赫尔梅斯手稿可以装满整整一手提箱呢!

有形状的数

毕达哥拉斯不仅知道奇数、偶数、质数、合数,还把自然数分成了亲和数、亏数、完全数等等。他分类的方法很奇特,其中,最有趣的是“形数”。

什么是形数呢?毕达哥拉斯研究数的概念时,喜欢把数描绘成沙滩上的小石子,小石子能够摆成不同的几何图形,于是就产生一系列的形数。

毕达哥拉斯发现,当小石子的数目是1、3、6、10等数时,小石子都能摆成正三角形,他把这些数叫做三角形数;当小石子的数目是1、4、9、16等数时,小石子都能摆成正方形,他把这些数叫做正方形数;当小石子的数目是1、5、12、22等数时,小石子都能摆成正五边形,他把这些数叫做五边形数……这样一来,抽象的自然数就有了生动的形象,寻找它们之间的规律也就容易多了。不难看出,头四个三角形数都是一些连续自然数的和。瞧,3是第二个三角形数,它等于1+2;6是第三个三角形数,它等于1+2+3;10是第四个三角形数,它等于1+2+3+4。

看到这里,人们很自然地就会生发出一个猜想:第五个三角形数应该等于1+2+3+4+5,第六个三角形数应该等于1+2+3+4+5+6,第七个三角形数应该等于……这个猜想对不对呢?

由于自然数有了“形状”,验证这个猜想费不了什么事。只要拿15个或者21个小石子出来摆一下,很快就会发现:它们都能摆成正三角形,都是三角形数,而且正好就是第五个和第六个三角形数。

就这样,毕达哥拉斯借助生动的几何直观,很快就发现了自然数的一个规律:连续自然数的和都是三角形数。如果用字母n表示最后一个加数,那么1+2+…+n的和也是一个三角形数,而且正好就是第n个三角形数。

毕达哥拉斯还发现,第n个正方形数等于n2,第n个五边形数等于n(3n-1)/2,第n个六边形数等于2n(n-1)……根据这些规律,人们就可以写出很多很多的形数。

不过,毕达哥拉斯并不因此而满足。譬如三角形数,需要一个数一个数地相加,才能算出一个新的三角形数,毕达哥拉斯认为这太麻烦了,于是着手去寻找一种简捷的计算方法。经过深入探索自然数的内在规律,他又发现,1+2+……+n=12×n×(n+1)这是一个重要的数学公式,有了它,计算连续自然数的和可就方便多了。例如,要计算一堆电线杆数目,用不着一一去数,只要知道它有多少层就行了。如果它有7层,只要用7代替公式中的n,就能算出这堆电线杆的数目。

1+2+3十4+5+6+7=12×7×(7+1)=28(根)就这样,毕达哥拉斯借助生动的几何直观,发现了许多有趣的数学定理。而且,这些定理都能以纯几何的方法来证明。

例如,在一些正方形数里,左上角第一个框内的数是1,它是1的平方;第二框内由1+3组成,共有4个小石子,它是2的平方;第三个框内由1+3+5组成,共有9个小石子,它是3的平方。……由此不难看出,只要在正方形数上作些记号,就能令人信服地说明一个数学定理:“从1开始,任何个相继的奇数之和是完全平方。”即1+3+5+……+(2n-1)=n2费尔马小定理

17世纪时,有个法国律师叫费尔马。他非常喜欢数学,常常利用业余时间研究高深的数学问题,结果取得了很大的成就,被人称为“业余数学家之王”。

费尔马研究数学时,不喜欢搞证明,喜欢提问题。他凭借丰富的想像力和深刻的洞察力,提出了一系列重要的数学猜想,深刻地影响了数学的发展。他提出了“费尔马大定理”,几百年来吸引了无数的数学家,是一个至今尚未完全解决的着名数学难题。

费尔马最喜欢的数学分支是数论。他曾深入研究过质数的性质。1640年,他发现了一个有趣的现象:

当n=1时,22n+1=221+1=5;当n=2时,22n+1=222+1=17;当n=3时,22n+1=223+1=257;当n=4时,22n+1=224+1=65537;费尔马没有继续算下去,他猜测说:只要n是自然数,由这个公式算出的数一定都是质数。

这是一个很有名的猜想。由于演算起来很麻烦,很少有人去验证它。1732年,大数学家欧拉认真研究了这个问题。他发现,费尔马只要往下演算一个自然数,就会发现由这个公式算出的数不全是质数。

n=5时,22n+1=225+1=4294967297,4294967297可以分解成641×6700417,它不是质数。也就是说,费尔马的这个猜想不能成为一个求质数的公式。

实际上,几千年来,数学家们一直在寻找这样一个公式,一个能求出所有质数的公式。但直到现在,谁也未能找到这样一个公式。而且谁也未能找到证据,说这样的公式就一定不存在。这样的公式究竟存在不存在,也就成了一个着名的数学难题。

费尔马有心找出一个求质数的公式,结果未能成功,人们发现,倒是他无意提出的另一个猜想,对寻找质数很有用处。

费尔马猜测说:如果P是一个质数,那么,对于任何自然数n,np-n一定能够被P整除。这一回,费尔马猜对了。这个猜想被人称做费尔马小定理。例如11是质数,2是自然数,所以211-2一定能被11整除。

如果反过来问:若n能够整除2n-2,n是否一定就是质数呢?

答案是否定的。但人们发现,由这个公式算出的数绝大多数是质数。有人统计过,在1010以内,只要n能整除(2n-2),则n有999967%的可能是质数。这样,只要能剔除为数极少的冒牌质数,鉴定一个数是不是质数也就不难了。

利用费尔马小定理,这是目前最有效的鉴定质数的方法。要判断一个数的n是不是质数,首先看它能不能被(2n-2)整除,如果不能整除,它一定是合数;如果能整除,它就极有可能是质数。

有消息说,在电子计算机上运用这种新方法,要鉴定一个上百位的数是不是质数,一般只要15秒钟就够了。

破碎的数

在拉丁文里,分数一词源于frangere,是打破、断裂的意思,因此分数也曾被人叫做是“破碎数”。

在数的历史上,分数几乎与自然数同样古老,在各个民族最古老的文献里,都能找到有关数的记载,然而,分数在数学中传播并获得自己的地位,却用了几千年的时间。

在欧洲,这些“破碎数”曾经令人谈虎色变,视为畏途。7世纪时,有个数学家算出了一道8个分数相加的习题,竟被认为是干了一件了不起的大事情。在很长的一段时间里,欧洲数学家在编写算术课本时,不得不把分数的运算法则单独叙述,因为许多学生遇到分数后,就会心灰意懒,不愿意继续学习数学了。直到17世纪,欧洲的许多学校还不得不派最好的教师去讲授分数知识。以致到现在,德国人形容某个人陷入困境时,还常常引用一句古老的谚语,说他“掉进分数里去了”。

一些古希腊数学家干脆不承认分数,把分数叫做“整数的比”。

古埃及人更奇特。他们表示分数时,一般是在自然数上面加一个小圆点。在5上面加一个小圆点,表示这个数是1/5;在7上面加一个小圆点,表示这个数是1/7。那么,要表示分数2/7怎么办呢?古埃及人把1/4和1/28摆在一起,说这就是2/7。

1/4和1/28怎么能够表示2/7呢?原来,古埃及人只使用单分子分数。也就是说,他们只使用分子为1的那些分数,遇到其他的分数,都得拆成单分子分数的和。1/4和1/28都是单分子分数,它们的和正好是2/7,于是就用14+128来表示2/7。那时还没有加号,相加的意思要由上下文显示出来,看上去就像把1/4和1/28摆在一起表示了分数2/7。

由于有了这种奇特的规定,古埃及的分数运算显得特别繁琐。

例如,要计算5/7与5/21的和,首先得把这两个分数都拆成单分子分数:

57+521=(12+17+114)+(17+114+142);然后再把分母相同的分数加起来:

12+27+214+142;由于算式中出现了一般分数,接下来又得把它们拆成单分子分数:

12+14+17+128+142。

这样一道简单的分数加法题,古埃及人算起来都这么费事,如果遇上复杂的分数运算,他们算起来又该是何等的吃力。

在西方,分数理论的发展出奇地缓慢,直到16世纪,西方的数学家们才对分数有了比较系统的认识。甚至到了17世纪,数学家科克在计算35+78+910+1220时,还用分母的乘积8000作为公分母!

而这些知识,我国数学家在2000多年前就都已知道了。

我国现在尚能见到最早的一部数学着作,刻在汉朝初期的一批竹简上,名字叫《算数书》。它是1984年初在湖北省江陵县出土的。在这本书里,已经对分数运算作了深入的研究。

稍晚些时候,在我国古代数学名着《九章算术》里,已经在世界上首次系统地研究了分数。书中将分数的加法叫做“合分”,减法叫做“减分”,乘法叫做“乘分”,除法叫做“经分”,并结合大量例题,详细介绍了它们的运算法则,以及分数的通分、约分、化带分数为假分数的方法步骤。尤其令人自豪的是,我国古代数学家发明的这些方法步骤,已与现代的方法步骤大体相同了。

例如:“又有九十一分之四十九,问约之为几何?”书中介绍的方法是:从91中减去49,得42;从49中减去42,得7;从42中连续减去7,到第5次时得7,这时被减数与减数相等,7就是最大的公约数。用7去约分子、分母,那就得到了49/91的最简分数7/13。不难看出,现在常用的辗转相除法,正是由这种古老的方法演变而来。

公元263年,我国数学家刘徽注释《九章算术》时,又补充了一条法则:分数除法就是将除数的分子、分母颠倒与被除数相乘。

而欧洲直到1489年,才由维特曼提出相似的法则,已比刘徽晚了1200多年!

苏联数学史专家鲍尔加尔斯基公正地评价说:“从这个简短的论述中可以得出结论:在人类文化发展的初期,中国的数学远远领先于世界其他各国。”

天外来客

我们在前面讲述过毕达哥拉斯的故事。在西方数学史上,他还以发现毕达哥拉斯定理而闻名。

毕达哥拉斯定理的内容是:在直角三角形里,两条直角边的平方和,一定等于斜边的平方。这是几何学里一个非常重要的定理。

相传毕达哥拉斯发现这个定理以后,高兴得不得了,宰了100头牛大肆庆贺了许多天。

说来有趣,正是这个让他欣喜若狂的定理,后来又使他狼狈万分,几乎无地自容。

毕达哥拉斯有一句名言,叫做“万物皆数”。他把数的概念神秘化了,错误地认为:宇宙间的一切现象,都可以归结为整数或者整数的比;除此之外,就不再有别的什么东西了。

问题就出在这里。有一天,毕达哥拉斯的一个学生,在世界上找到了一种既不是整数,又不是整数之比的怪东西。

这个学生叫希伯斯,他研究了一个边长为1的正方形,想知道对角线的长度是多少。

从图上看得很清楚,对角线与正方形的两条边组成了一个直角三角形。根据毕达哥拉斯定理,希伯斯算出对角线的长度等于2。

可是,2既不是整数,也不是整数的比。他惶惑极了:根据老师的看法,2应该是世界上根本不存在的东西呀?

希伯斯把这件事告诉了老师。毕达哥拉斯惊骇极了,他做梦也没想到,自己最为得意的一项发明,竟招来一位神秘的“天外来客”。

同类推荐
  • 新课标最佳阅读:汤姆·索亚历险记

    新课标最佳阅读:汤姆·索亚历险记

    汤姆幼年丧母,由姨妈收养。聪明顽皮的汤姆受不了姨妈和学校老师的管束,常常逃学闯祸。一天深夜,他与好朋友哈克贝利·费恩到墓地玩耍,无意中目睹了一起凶杀案的发生。因为害怕凶手发现他们知道这件事,汤姆、哈克贝利带着另一个小伙伴一起逃到一座荒岛上做起了“海盗”,家里以为他们被淹死了。经过激烈的思想斗争,汤姆站出来指证了凶手。不久后,在一次野餐活动中,他与他心爱的蓓姬·撒切尔在一个岩洞里迷了路,面临着死亡的威胁......最终,他们走出了山洞,并告诉村里人在山洞里见到了杀人犯印江·乔,当村人在洞中找到印江·乔时,他已经死了。最后,汤姆和哈克贝利重返山洞,找到了一笔宝藏,成了这个村的英雄。
  • 尼尔斯骑鹅旅行记

    尼尔斯骑鹅旅行记

    这是一套献给孩子们的书。一如它的名字“阅读一小步·成长一大步”,在孩子们开始求知的成长旅程时,一套适合他们课外阅读的好书无疑为他们的人生……
  • 新概念作文十六年纪念版精华范本(才女卷)

    新概念作文十六年纪念版精华范本(才女卷)

    近几年中学语文教育也在大幅度改革,许多人认为高考作文的命题和新概念作文大赛复赛题已经相当接近,这是非常好的发展趋势。正如王蒙所说,新概念由旧概念来。倡导新概念不是为了标新立异,而是想提高青年学子对作文的兴趣,告诉他们只有真实的、表达真情实感的、富有创造性和想象力的文章才是好文章。
  • 财富思想家(语文新课标课外读物)

    财富思想家(语文新课标课外读物)

    《财富思想家》讲述了孔子、马克思,列宁等这些创造了人生财富的名人的生平事迹。
  • 趣味问答(智商总动员)

    趣味问答(智商总动员)

    本套丛书涉及到少年儿童必须知道的许多知识领域,具有很强的系统性、实用性和现代性,是一套小小的百科全书,非常适合少年儿童阅读和收藏。
热门推荐
  • 蜀山剑侠传3

    蜀山剑侠传3

    小说以峨眉弟子“三英二云”、“七矮”等的修真学艺、斩妖除魔为故事核心。“三英”之一的李英琼是整套小说的主角,小说详细描述了她从一个普通女子,经过无数次的机缘巧合,得到了长眉真人的紫郢剑以及白眉和尚的定珠,获得了圣姑的一甲子功力,最终成长为峨嵋派后辈中最杰出的人物……
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 逆天特工之凤绝

    逆天特工之凤绝

    她是二十一世纪的拥有异能的神秘特工,不属于任何国家和组织,专门调查人类认知以外的事物。一次任务她掉进了时间的缝隙,穿越到了一个历史上没有的时代。无论在现代还是古代,她都注定是女王,看她如何在古代混的风生水起,狂妄是她的特权,邪佞是她的本性,美貌和智慧是她的武器,睥睨大地,也只是需要她的一个意愿而已。
  • 世界智慧故事全集

    世界智慧故事全集

    本书有令您眼界大开的历史故事,有充满睿智的名人故事,有奇峰迭起的语言和才艺故事,有悬念百出的逻辑推理故事,有充份体现世界各民族文化的民间故事、寓言故事,还有日常生活中平凡人的智慧故事和商业巨子的商战才智故事…可以在您的成功之路上助您一臂之力。
  • 红粉世家

    红粉世家

    民国时期,淡泊名利的画家于水村迁居南京附近,过着寄情山水的生活。因偶然的机会结识了歌女桃枝,两人陷入热恋,后因误会导致分手。桃枝财气答应某老板的求婚,嫁与他作妻。在两人的结婚喜筵上,老板夫人大闹喜堂,多亏水村出面自认,化解了局面……
  • 黑鹰坠落(好莱坞同名电影原著)

    黑鹰坠落(好莱坞同名电影原著)

    雷德利·斯科特执导经典战争片《黑鹰坠落》原著。本书记录了美军自越战以来最惨烈的失败。“摩加迪沙之战”是美军在索马里发动的抓捕当地军阀的行动,由于准备不充分和情报错误,行动陷入混乱。两架美军160特种航空团的UH60“黑鹰”直升机被击落,抓捕行动随即变成拯救行动。美军苦战15小时,最终在巴基斯坦维和部队的掩护下撤退。这是美国陆空协同城市作战战术的惨痛失败。作品通过对电文资料、现场影音资料的整理,真实再现了激烈的现代战争场景。这支最精锐的特种部队,面对最压抑的恐惧,历经着战争中的恐怖、悬念、悲痛、血腥搏杀,体现着战争中的英雄主义、泣血的友谊、和永不言弃的坚持。
  • 秦始皇出巡记

    秦始皇出巡记

    本书审视了两千多年以来鲜为人知的有关秦始皇出巡的历史,并恢复了那段历史的本来面目,重在发掘秦始皇心灵深处的秘密,揭示他所处时代的精神本质,佐证对秦始皇和秦代历史的研究。
  • 狄小杰侦探社(合集)

    狄小杰侦探社(合集)

    一桩桩邪恶的交易,一幕幕战栗的黑暗,一次次恐怖的经历,一层层骇人的阴谋……在这个城市的角落里发生,在他们身边、在他们的手上化为乌有。他是狄仁杰的第36代孙,她是阿加莎·克里斯蒂的忠实拥趸。他是长相平平、身材一般,穷困潦倒的毛头小伙,她是才色双全、身材火辣,家庭富足的千金小姐。他沉着冷静、思维缜密,善于透过离奇恐怖的事件表象,寻找蛛丝马迹,她直觉敏锐、大胆直率,擅长抛弃繁冗复杂的感情因素,揪出幕后黑手。他们无数次患难与共,却从未享受美好,他们无数次出生入死,却从未停下脚步……"
  • 藏獒精神:企业员工忠诚度培训读本

    藏獒精神:企业员工忠诚度培训读本

    藏獒的优秀品格:自尊自敬,自强自立;善解人意,感恩为怀;精忠报主,忠诚可靠;勇往直前,毫不畏惧;百折不挠,坚忍不拔。职场人士危机中,求生存、谋发展指南——学习藏獒精神,领会藏獒文化,帮助职场员工克服困难、重塑自我、提升业绩、成就辉煌。
  • 绝世神偷:废柴七小姐

    绝世神偷:废柴七小姐

    她是二十四世纪的神偷,却穿越到了一个白痴废柴的身上,没爹没妈,还要看家族里那些人的脸色。白痴?废物?很好,她很快就会让这群愚蠢的地球人知道,什么叫后悔莫及!斗气?魔法?她魔武双修碾压一切天才。家主之位?朱雀神兽?想要?不好意思她拿了不过谁来告诉她,这个坐个马车都晕车狂吐的萌正太,真的是神兽朱雀?那个寄居在她身体里,跟个大爷一样的神秘灵魂又是哪位大神?还有……为什么别人家的小伙伴都是各种霸气外露,霸王之气无可比敌。怎么她身边这几只,不是奸商狐狸男,就是面瘫冰山技术宅,要么就是花心风流鬼,最好的只怕就是那个病美男了!说好的争霸天下,凌虐四方呢?求不坑爹!