登陆注册
3236900000007

第7章

1,2,3……12,45,7916……-3,-8-11……2,π,e……这各种各样的数,都有自己的“身份”,它们共同组成数的家族。

第一组成员是自然数。小时扳手指头数地的1,2,3……就是自然数。这也是我闪祖先最早认识的数,自然数称为正整数。

第二组成员是分数。5个人分3个苹果,古人最初是这样做的:把一个苹果分成相同的五份,每人取一份,即15,对另两个苹果做同样的分配,最后每人得到3个15,这就是我们所说的35。分数的记载最先出现在距今四千多年的古埃及纸草书中。

零的出现是比较晚的,从“无”到“零”的认识是一个漫长的过程。据说公元前二百年,希腊人已有零号的记载,但真正把零当作一个独立的数来使用是公元9世纪由印度人做出的。

负数在中国的西汉时期(约公元前2世纪)已经萌牙,并最先作为数学的研究对象出现在公元1世纪的《九章算术》中。

正整数(自然数)、零和负整数就构成全体整数。正分数和负分数构成全体分数。

整数和分数构成了有理数。当然,广义的分数中已经包括了整数,因为可以把整数看成分母是1的分数。

每个有理数都可以表示成两个整数的比。但是,公元前5世纪希腊数学家发现2不可能表示成两个整数之比,因而引起了一场极大的风波。后来把不能表示成两个整数之比的数称为无理数。现在我们知道无理数比有理数要多得多。

有理数和无理数统称为实数。在实数范围内,方程x2+1=0是无解的。于是,科学家引入了+bi的数就称为复数,而i=称为虚数单位。

除此之外,还有新的数。如果学习高等数学,会遇到四元数、各种超复数,以及类似的数学对象。随着数学的发展,数的家族将不断增加新的成员。

0的意思

0,通常表示什么也没有。但实际上零表示的意义非常丰富。

0不但可以表示没有,也可以表示有。电台、电视里报告气温是0℃,并不是指没有温度,而是相当于华氏表32度,这也是冰点的温度。0还可以表示起点,如发射导弹时的口令是:“9,8,7,6,5,4,3,2,1,0——发射”。0在数轴上作为原点,也是起点的意思。0还可以表示精确度。如在近似计算中,75与750表示精确程度不同。

在实数中,0又是正数与负数间的惟一中性数,具备下面一些运算性质:

a+0=0+a=aa-0=a0-a=-a0×a=a×0=0,y0÷a=0,(a0)0不能作除数,0也没有倒数;0的绝对值和相反数都是0;任意多个0相加和相乘都等于0。

在指数和阶乘运算中,还有:a°=1(其中a0)。

0在复数中,是惟一辐角没有定义的复数。0还没有对数。现代电子计算机用的二进制中,0还是一个基本数码。

在0发明之前,我们祖先记数的方法是繁琐而不完善的,要记一个大数就要将某些符号重写多次。在采用了印度一阿拉伯数码,而没有用0这个符号时,前人将一百万、三万、四百、五这几个数之和表示为:1345,这种表示就会产生误解,或是一百零三万四百零五,或是一千三百四十五。于是用打格的办法来区分:

1345空的地方表示空位。但这又使运算变得很麻烦。采用0后,就可以简洁地写成:1030405。因此,没有采用0之前,可以说记数法是不完整的。

0是数学中最有用的符号之一,但它的发明是来之不易的。古埃及虽建造了宏伟的金字塔,但不会使用0;巴比伦人发明了楔形文字,也不会使用0;中国古代用筹运算时,怕定位发生错误,开始用代表空位,为书写方便逐渐写成。公元2世纪希腊人在天文学上用表示空位,但不普遍。比较公认的是印度人在公元6世纪最早用黑点(·)表示零,后来逐渐变成了0。

小数的经历

有了小数之后,记数就更方便了。如圆周率近似值31416,若用分数表示,就得写成39271250,很麻烦,何况还有更多位的小数和更复杂的运算。有位着名的美国数学史家说:“近代计算的奇迹这般的动力来自三项发明,印度记数法、十进分数和对数。”这里所说的十进分数就是指小数。

在西方,一般认为小数是比利时数学家斯蒂文发明的。但最早使用现代意义的小数点的是德国数学家克拉维斯,他在1593年使用了小数点。但是直到19世纪末,小数的记号仍很混乱。就是在现代,小数点也分为欧洲大陆派和英美派两种记法,前者采用逗号后者则坚持用圆点“”。

实际上,早在斯蒂文发明小数点之前很久,中国、印度和中亚就已经使用十进分数了,也即小数。

公元3世纪,我国魏晋时期刘徽的《九章算术注》中,有三处运用了十进分数的思想。到了南北朝时期,在历法中大量使用了下列记法:

十一万八千二百九十六二十五(1189625)九十八三(983)百一十九11912这种写法和西方直到19世纪仍在流行的小数记法25或25,几乎是完全相同的。

到了宋元时期,更有下列记法:

(324506,1247年)(025,1247年)(-05,1248年)这些记法都远远胜过三百多年后斯蒂文的记法。

中亚的阿尔卡西是世界上除中国人之外第一个应用十进分数的。他的用法体现在他1427年的《算术之钥》一书中。

不论在东方还是西方,对小数的认识都经过了几百年甚至上千年的演变。

虚数

“虚数”这个名词,听起来好像“虚”,实际上却非常“实”。

虚数是在解方程时产生的。求解方程时,常常需要将数开平方。如果被开方数不是负数,可以算出要求的根;如果是负数怎么办呢?

譬如,方程x2+1=0,则x2=-1,x=±-1。那么-1有没有意义呢?在很久之前,大多数数学家认为负数没有平方根。到了16世纪中叶,意大利数学家卡尔丹发表了《大法》这一数学着作,介绍了三次方程的求根公式。他不仅讨论了正根和负根,还讨论了虚数根。如解x3-15x+4=0这一方程时,依据他的求根公式,会得到:

x=-2+-121其中-121就是负数的平方根。卡尔丹写出了负数的平方根,但他认为这也仅仅是形式表式表示而已。说明他对负数平方根的性质并不了解。1637年,法国数学家笛卡尔开始用“实数”、“虚数”两个名词。1777年,瑞士数学家欧拉开始用符号i=-1表示虚数的单位。而后人将实和虚数结合起来,写成a+bi形式(a、b为实数),称为复数。

由于虚数闯进数学领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长一段时间里,人们对虚数产生了种种怀疑和误解。笛卡尔称“虚数”的本意是指它是虚假的;莱布尼兹在公元18世纪初则认为:“虚数是美妙而奇异的神秘隐蔽所,它几乎是既存在又不存在的两栖物”。欧拉尽管在许多地方用了虚数,但又说一切形如-1、-2的数学式都是不可能有的,纯属虚幻的。

欧拉之后,挪威一个测量学家维塞尔,提出把复数a+bi用平面上的点(a,b)来表示。后来,高斯提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的数量),这在水力学、地图学、航空学中的应用是十分广泛的。虚数越来越显示出其丰富的内容,真是:虚数不虚!

无限大与无限小

人们一般碰到的数,无论是实数还是复数,都有确定的量值,换句话说是有限的。这反映了我们通常碰到的事物是有限的,总可以用这些数计量。

人类的长期的认识过程中,又逐渐产生两个新的概念。最早的时候,人们将整个宇宙理解为地球,航海学的测量又测得地球半径为6370公里,对人们来说,那是一个非常大的数。16世纪,哥白尼的“日心说”又将宇宙扩大到以太阳为中心的太阳系,太阳系的半径为60亿公里,约是地球半径的94万倍,地球与之相比只是沧海一粟了。18世纪,人们的视野扩展到银河系,银河系的直径相当于93312×1017公里,这个数字更是大得惊人。随着科学技术的发展,人们借助射电望远镜,又将宇宙范围扩展到星系团、超星系团,以至总星系。这些星系的半径都在数百万光年(光年即光走一年的路程,约93312×1017公里)以上,这个数字简直是无法把握的。总星系之上当然还有更大的宇宙,永远不会穷尽。这样就出现了无限大的概念,数学上记为∞。它的含义是比任何数都大的数,这个数当然是虚拟的,不是一个确定的数。

在微观世界,人类的认识也从分子认识到原子,从原子认识到原子核。原子核的直径约10-13厘米,原子核还可以分解为质子、中子,它们的直径更小。这一分解过程也可以无穷尽地进行下去。这样就带来了无限小的概念。

无限大、无限小的含义已经涉及数的变化趋势了,这是从确定量到变量的过渡中产生的数,是微积分的基础。

将循环小数化成分数

将循环小数化成分数,是解决有关循环小数的基本方法。怎样才能将循环小数化成分数呢?

这要请我们的老朋友——9来帮助解决问题。我们知道,在数列计算中,有一个无穷等比数列的求和公式s=a1-q。其中a是这个数列的第一项,q是公比。下面要用这个公式来研究化循环小数为分数的方法。先观察下面两个循环小数:0666……=06,0242424……=024。它们都是从小数点后的第一位开始循环的,叫做纯循环小数。为了便于计算,先将它们写成分数的和的形式:

0666……=06+006+0006+……=610+6100+61000+610000+……0242424……=024+00024+0000024+……=24100+241000+241000000+……这就变成了无穷递缩等比数列的形式。06666……的公比是110,而0242424……的公比是1100。根据求和公式得:

066……=6101-110=610-1=69,02424……=241001-1100=24100-1=2499。

由此可以看出,要把纯循环小数化为分数,只要把一个循环节的数化为分子,让分母由9组成,循环节有几位数字,分母是几个9就行了。例如:

04444……=04=4905656……=056=5699,031233123……=03123=31239999=3471111。

下面再来看看以下两个循环小数:

02888……=028,03545454……=0354它们都不是从小数点的第一位开始循环的,这叫混循环小数。用分数的和可表示为:

02888……=210+8100+81000+810000+……035454……=310+541000+54100000+……这种和的形式,从第二项起,构成了一个分别以110,1100为公比的无穷递缩等比数列。由求和公式得:

02888……=210+81001-110=210+8100-10=210+890=2×9+890=2690=1345。

035454……=310+5410001-1100=310+541000-10=310+54990=3×99+54900=351990=39110。

由此可以看出:把混循环小数化为分数,先去掉小数点,再用第二个循环节以前的数字减去不循环部分的数字,将得到的差作为分子;分母由9和0组成,9的个数等于一个循环节的位数,9的后面写0,0的个数等于不循环部分的位数。例如:

02777……=027=27-290=2590=518。

031252525……=03125=3125-319900=15474950。

数学的变化虽是无穷的,在研究了大量的现象或大量的例题后,应学会从特殊的问题中,总结出一般规律的思考方法。这种由特殊情况归纳出一般情况的方法称为经验归纳法。

逻辑体系的奇迹

公元前3世纪时,最着名的数学中心是亚历山大城;在亚历山大城,最着名的数学家是欧几里得。

欧几里得知识渊博,数学造诣精湛,尤其擅长于几何证明。连当时的国王也经常向他请教数学问题。有一次,国王做一道几何证明题,接连做了许多天都没有做出来,就问欧几里得,能不能把几何证明搞得稍微简单一些。欧几里得认为国王想投机取巧,于是不客气地回答说:“陛下,几何学里可没有专门为您开辟的大道!”这句话长久地流传下来,许多人把它当做学习几何的箴言。

在数学上,欧几里得最大的贡献是编了一本书。当然,仅凭这一本书,就足以使他获得不配的声誉。

这本书,也就是震烁古今的数学巨着《几何原本》。

为了编好这本书,欧几里得创造了一种巧妙的陈述方式。一开头,他介绍了所有的定义,让大家一翻开书,就知道书中的每个概念是什么意思。例如,什么叫做点?书中说:“点是没有部分的。”什么叫做线?书中说:“线有长度但没有宽度。”这样一来,大家就不会对书中的概述产生歧义了。

接下来,欧几里得提出了5个公理和5个公设:

公理1与同一件东西相等的一些东西,它们彼此也是相等的。

公理2等量加等量,总量仍相等。

公理3等量减等量,总量仍相等。

公理4彼此重合的东西彼此是相等的。

公理5整体大于部分。

公设1从任意的一个点到另外一个点作一条直线是可能是。

公设2把有限的直线不断循直线延长是可能的。

公设3以任一点为圆心和任一距离为半径作一圆是可能的。

公设4所有的直角都相等。

公设5如果一直线与两直线相交,且同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点。

在现在看来,公理与公设实际上是一回事,它们都是最基本的数学结论。公理的正确性是无庸置疑的,因为它们都经过了长期实际践的反复检验。而且,除了第5公设以外,其他公理的正确性几乎是“一目了然”的。想想看,你能找出一个例子,说明这些公理不正确吗?

这些公理是干什么用的?欧几里得把它们作为数学推理的基础。他想,既然谁也无法否认公理的正确性,那么,用它们作理论依据去证明数学定理,只要证明的过程不出差错,定理的正确性也是理论证据,却能推导出新的数学定理来。这样,就可以用一根逻辑的链条,把所有的定理都串联起来,让每一个环节都衔接得丝丝入扣,无懈可击。

在《几何原本》里,欧几里得用这种方式,有条不紊地证明了467个重要的数学定理。

从此,古希腊丰富的几何学知识,形成了一个逻辑严谨的科学体系。

这是一个奇迹!2000多年后,大科学家爱因斯坦仍然怀着深深的敬意称赞说:这是“世界第一次目睹了一个逻辑体系的奇迹”。

尺规作图拾趣

希腊是奥林匹克运动的发源地。奥运会上的每一个竞赛项目,对运动器械都有明确的规定,不然的话,就不易显示出谁“更快、更高、更强”。一些古希腊人认为,几何作图也应像体育竞赛一样,对作图工作作一番明确的规定,不然的话,就不易显示出谁的逻辑思维能力更强。

同类推荐
  • 教你打门球(学生球类运动学习手册)

    教你打门球(学生球类运动学习手册)

    21世纪,人类进入了新经济时代。综合国力竞争的实质是民族素质的竞争,是人才的竞争,是教育的竞争。在这样的背景下,加强素质教育,尤其是进行身体素质教育就显得更为重要。球类运动是世界上开展的最广泛的运动项目之一,也是广大体育爱好者乐于观赏和参与的体育运动。经常进行此类运动,不仅可以增强人们的体质,提升身体的协调性,而且还能增强我们的自信心以及培养团队精神。
  • 幸福之门

    幸福之门

    我们中小学生必须要加强阅读量,以便提高自己的语文素养和写作能力,以便广开视野和见识,促进身心素质不断地健康成长。但是,现在各种各样的读物卷帙浩繁,而广大中小学生时间又十分有限,因此,找到适合自己阅读的读物,才能够轻松快速地达到阅读的效果。
  • 青少年必读著名诗人的故事(启迪青少年的语文故事集)

    青少年必读著名诗人的故事(启迪青少年的语文故事集)

    本丛书重视语文的基础知识训练,选编了常用词语、好词好句、古文名句解读,谚语、歇后语集萃,还有语文趣味故事、语文之谜以及语文大家的故事等等,目的是使中小学生在快乐的阅读中逐步提高语文知识,增加文学素养,为将来走出社会自立人生打下坚实的基础。
  • 小鹿班比(语文新课标课外必读第十一辑)

    小鹿班比(语文新课标课外必读第十一辑)

    《小鹿班比》是一部经典的杰作。这是一只鹿的成长故事,从它刚出世不久一起讲到它成年。作者察尔滕为我们描绘了一个美丽、真实的森林世界,动物的生活习性也描述得相当准确,就像一部很有诗意的森林动物手册。
  • 蓓根的五亿法郎(语文新课标课外必读第九辑)

    蓓根的五亿法郎(语文新课标课外必读第九辑)

    本书由凡尔纳的两部作品组成,即《蓓根的五亿法郎》和《天边灯塔》。1878年,流亡中的巴夏尔·格鲁塞用安德烈·洛里这个名字寄给赫泽尔一部名为《朗日沃尔的遗产》的小说。赫泽尔要求儒勒·凡尔纳负责重写这部小说,这就有了现在的《培根的五亿法郎》。
热门推荐
  • 搬个菠萝晒太阳

    搬个菠萝晒太阳

    这是一本关于爱、幸福以及简单生活的书。小龟坨坨从饲养场被卖到宠物店,在这里它遇到了善良并有些忧郁的主人,还遇到了像亲人一样的伙伴——史努比猫和叮当狗。他们的生活并非一帆风顺,有欢乐也有烦恼,有喜悦也有忧伤,有生存也有死亡。然而坨坨以自己的快乐、温情、爱和单纯打败了所有的不幸,悠然地过着属于自己的幸福生活。本书通过一只龟的视角来观察、记录和评论人类的生活,在这里,你能找到关于生活、关于爱、关于温情、关于信任、关于感恩、关于痛苦、关于幸福的真正含义。
  • 少年将军:清清碧海心

    少年将军:清清碧海心

    ”“你是天下第一的天宝将军,你不会的,师出同门,我不允许你死!”她本是无牵无挂妙手回春的医者,但独独没有医者仁心的悲悯,只会救一个人,本是两小无猜,“都哥,你记住,却因乱世天下,于她则是顺手医治了一位孱弱少年,一个情字终难全。“清清,你的命是我救的,注定是一场无法言说的殇。树下的相遇,他接住了她也接住了自己的一生,我只要你活着。”尘埃落定后她终于明白医者不能自医,却也从此在心里藏下了一个人。他是将军,注定要征战疆场,更医不了宿命。,天下第一;山野丫头,只听一个人的话。这天下人的生死都与我无关,少年才俊,官拜将军,只要你活着,风华绝代,天下无双。青梅竹马,我是大隋的将军,战死沙场才是我最终的归宿
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 凶悍嫡女:腹黑红颜覆天下

    凶悍嫡女:腹黑红颜覆天下

    乌鸦就是乌鸦,永远成不了凤凰居然把她当病猫,没听过一句话么!别跟小人过不去,因为你还要过下去,惹我者死,趁其不备,杀其不意。片甲不留!,谁让我过愚人节,我让她过清明节!她不就是嚣张狂妄一些嘛,老天爷需要苦大仇深的让她穿越么?她前世不过是太聪明了,这辈子也不用成傻子吧?幸好有个金牌丞相爹,不愁吃来不愁穿。她爹不过是宠她了点,那些人需要那么眼红么?后娘要毒死她,妹妹要抢她地位。
  • 教你学赛艇·皮划艇

    教你学赛艇·皮划艇

    水上运动是集竞争性、观赏性和刺激性于一体的、富有现代文明特征的竞技体育项目。它是为了区别于陆上和空中体育项目,全部过程或主要过程都在水下、水面或水上进行的体育项目。
  • 嫣然笑睥天下:醉心皇后

    嫣然笑睥天下:醉心皇后

    她穿越时空,获得倾世容颜,却注定被卷入帝位争夺的阴谋。她情窦初开,却发现最爱之人竟是自己的兄长。霸道自负的洛沉佑对她不屑一顾,却逐渐被她的善良和孤傲吸引。她以为沉冷邪魅的訾祁穆会是自己的良人,可她的信任只换来一次又一次的利用。江山与美人,是亘古不变的选题。最后的最后,她终于感叹,或许,作茧自缚的不是别人,而是她自己。如果遇见印枫轩是她犯得第一个错,那么碰上訾祁穆就是第二个。曾经山盟海誓何其温暖,但终究只是让她兑现最初那一句:“若是你负我,我定会亲手毁了你的江山。”
  • 凰唳九霄:步步生莲一苑酒

    凰唳九霄:步步生莲一苑酒

    十里长亭笛声悠扬飞跃皓蓝长天,亭中薄衫缓带清逸幽然如斜倚青竹其中少年。相思一种,半世情缘,竟种下谁的命中孽缘?是孽,是缘。是涅,还是缘?诉不尽光华内敛月色华然,道不尽其中苦楚花颜廖然。这一切,这一生,这一刻、这一眼。似盘旋,似回返。究竟谁偷了谁的情意绵绵,破了谁的抵死纠缠?爱罢,便散。。。注意不到的那夜月圆,看不见的月圆人未缘。生死别离一刻清盘,情深爱恨一瞬难言。哎呀爱呀,别再留恋,别再流连。跳出这黄金权势包围圈,破了这香艳迷踪黯然天。万事底定,爱人情牵,刀光剑影刹那间,翻了这地,灭了这天,勾了这魂,擦着这弦。待那一日凤凰于飞尾翼翩跹,我再为我这长恨苦痛解除一笺情缘。
  • 无敌大小姐

    无敌大小姐

    当现代阴狠毒辣,手段极多的火家大小姐火无情,穿越到一个好色如命,花痴草包大小姐身上,会发生怎样的化学反应?火无情一醒过来就发现,自己竟然在众目睽睽之下上演脱衣秀。周围还有一群围观者。这一发现,让她极为不爽。刚刚穿好衣服,便看到一个声称是自家老头的老不死气势汹汹的跑来问罪。刚上来,就要打她。这还得了?她火无情从生自死,都是王者。敢动她的人,都在和阎王喝茶。于是,她一怒之下,打了老爹。众人皆道:火家小姐阴狠毒辣,竟然连老爹都不放在眼里。就这样,她的罪名又多了一条。蛇蝎美人。穿越后,火无情的麻烦不断。第一天,打了爹。第二天,毁了姐姐的容。第三天,骂了二娘。第四天,当众轻薄了天下第一公子。第五天,火家贴出招亲启事:但凡愿意娶火家大小姐者,皆可去火府报名。来者不限。不怕死,不想活的,欢迎前来。警示:但凡来此,生死皆与火家无关。若有残病者火家一律不负法律责任。本以为无人敢到,岂料是桃花朵朵。美男个个很妖娆一号美人:火无炎。火家大少爷。为人不清楚,手段不清楚。容貌不清楚。唯一清楚的是,他有钱。有多多的钱。火无情语录:钱是好东西。娶了。(此美男,由美瞳掩饰不了你眼神的空洞领养。)火老爷一气之下,昏了过去。家门不幸,家门不幸啊。二号美人:竹清月。江湖人称天上神仙,地上无月。大国师一枚。美得惊天动地。火无情语录:美人好,尤其是自带嫁妆又会预测未来的美人,娶了。(此美男,由东de琳琳领养)三号美人:轩辕子玉。当朝七皇子,游历四国。一张可爱无敌的脸。单纯至极。火无情语录:可爱的孩子好,可爱又乖巧的孩子更好。可爱乖巧又不用给钱的孩子,娶了。(此美男,由刘千绮领养)皇帝听闻,两眼一抹黑。他的儿啊。怎么就这么不争气呢。四号美人:天下第一美男。性格不详,籍贯不详。火无情语录:谜一样的美人,她喜欢。每天都有新鲜感。娶了。(此美男,由告别的爱情li领养。)五号美人:天下第一名伶。火无情语录:解风情的美男,如果没钱花把他卖了都不用调教。娶了。(此美男由伊眸领养。)六号美男:解忧楼楼主。相貌不详,身世不详。爱好杀人。火无情语录:凶恶的美人,她喜欢。娶了。(此美男由陈铭铭领养)七号美男:琴圣。貌如谪仙,琴音杀人。冷清眸子中,百转千回,说尽风流。(此美男由伊眸领养)夜杀:天下第一杀手。(此美男由静寂之夜领养)
  • 狂君惹娇妻

    狂君惹娇妻

    她,原是抱着终生不嫁的念头,结果,还是被人强掠拜了天地意与“冲喜”无二致,她的丈夫会娶了她,原因是帮他改运她的胡说八道,倒是真的助上他三分,只不过,过程虽然很重要,更重要的却是结果事实证明,娶她不能达到他的目的【娘,为什么我们要一直走,一直走?】三岁的小娃娃小小的脑袋瓜里,藏着浓浓的不解【娘要带你去看遍天下美景啊】【可是宝宝好想住在外婆家里,那里很美很美啊,宝宝可不可以不要一直走——】会累哦!【……】当然不行啊,他们母子可不是真的在游山玩水,是在逃命哎。不巧的是,追他们的正是宝宝的爹!那个完全不顾他人意愿,一直来招惹她的男人——独孤苍啸◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇某依作品:《后娘嫁到》:《美厨前妻》:《总裁的前妻》:《残夫惹娇妻》:《极恶夫君》: