登陆注册
2379700000003

第3章 数学之谜(3)

公元263年,魏晋时期的刘徽在《九章算术法》中,首创周“割圆术”去求圆周率。即通过不断倍增圆内接正多边形的边数来求圆周长的方法。刘徽从计算国内接正六边形开始(此时边长等于半径),再计算正12边形周长,即将圆周12等分,进而正24边形,正48边形,直算到正192边形,即将圆周192等分,用其周长去近似表示国的周长。并说:“割之弥细,所失弥少。割之又割,以至于不可割,则与圆周合体,而无所失矣。”这就是说,当圆内接正多边形边数无限增加时,这个正多边形的周长,就无限逼近圆的周长。这种“无限逼近”的思维方法正是近代数学基础的极限思维方式。这种极限思维方式,虽早在春秋时代庄子的书中就有了,但将这种极限思维用于解决数学问题,刘徽乃第一人。

刘徽计算圆内按正192边形求圆周率,可不是简单的事。当时计算工具还十分落后,要计算是用筹算,得拿一捆细的棍棒(称为算筹)摆弄半天才算得一个数。算圆内接正多边形的边数每翻一番,至少要进行7次运算。其中除了加减运算还要计算2次乘方和2次开方。刘徽算到正192边形,边数翻了5番,算出的圆周率为3.141024与3.142704之间。可想而知,用筹算进行超过六位小数的乘方运算及开方运算,这需要多么熟练的运算技巧,需要多么顽强的毅力。刘徽算出的圆周率,虽然精确度只是3.14,但他开创的“割圆术”,以及对许多数学问题独创性的见解,使他受到世人的赞誉。

3.祖冲之创造的世界纪录

公元5世纪中国南北朝时期,祖冲之“专政数术,搜练古今,博采沉奥”,成为我国古代最伟大的数学家、天文学家、机械学家。

祖冲之祖籍范阳遒(今河北省沫水县北)人,公元429年生于江南。他祖上几代人都研究历法,受家庭熏陶,祖冲之自幼便对数学和天文产生了浓厚的兴趣。他年轻时胸怀雄心壮志,学习非常刻苦勤奋,阅读和研究了有关天文、数学的大量著作,同时又注重实际观测。经过长期钻研磨练,终于成为杰出的学者。

祖冲之青年时代曾在刘宋政府的华林省从事研究工作,后升任南徐州(今镇江)从事史,继又赴建康(今南京)任公府参军,渴者什射(朝廷礼书官),长水校尉等职。祖冲之就在这“江南佳丽地,金陵帝王州”度过了他一生的主要时光。

祖冲之对世界最大的贡献就是对圆周率的研究。据《隋书·律历志》记载,祖冲之求得“以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,助教三丈一尺四寸一分五厘九毫二秒六忽,正数在盈肭二限之间。密率:圆径一百十三,圆周三百五十五;约率:圆径七圆周二十二。”这就是说,祖冲之求出的结果为:

3.1415926<圆周率<3.1415927

密率:355/113,约率:22/7这个精确到小数点后七位的圆周率,在当时是非常了不起的成就。这个世界级的精确度,由祖冲之创造,并由他保持了一千年,直到15世纪,才由中亚的阿尔·卡希打破,得到精确到小数16位的值。

在筹算的时代,祖冲之是怎样求出精确到7位小数的圆周率值呢?说来真是遗憾。祖冲之写了一本非常优秀的数学著作《缀术》,其中包括了对国周率的研究及成果,以及其他的丰富内容,该书曾被唐国子监和朝鲜、日本用做算术课本。但隋唐时“学官莫能究其深奥,是故废而不理”。这就是说,在隋唐那个重文轻理的时代,当官的多不懂数学,祖冲之著的《馈术》,他们根本就看不懂,因此当废物弃之。到了北宋的1084年刻印各种算经时就找不见《缀术》,失传了。这不能不说是世界数学史上的重大损失。因此,祖冲之到底怎样算出圆周率值的,也就成了千古之谜。

后世数学家也多有研究这千古之谜的,总想探求祖冲之求圆周率的方法。若祖冲之是在前人成就的基础上,用“割圆术”去求圆周率,那么从圆内按正六边形开始,要将其边数翻11番,算到圆内接正12288边形,才能得到这样精确度的值。若用密率355/133作为圆周率,计算一个直径10公里的圆周长,结果只比真值还不大到3毫米。从这我们可以看到,祖冲之在求圆周率时的艰辛,以及所求圆周率的精确程度。我国自汉代便存在着“连分数术”。近代多有人认为祖冲之是用此法求的圆周率。但当时只能用筹算去算数,按精确到小数点7位去计算,那么,小数至少要保留12位,而12位小数的一次乘方和开方,就决非易事。无论他采用何种方法,在当时的条件下,祖冲之能算出精确到七位小数的圆周率是多么的不容易。正是这不容易,才构成了祖冲之的伟大,才使中国的数学在全世界独领风骚1000年。

祖冲之成为中华民族的骄傲,人们将它的“密率”称为“祖率”。人类为了纪念这位数学家,将月球背面发现的一个环形山谷,命名为“祖冲之山谷”。

4.π值的近代计算

祖冲之之后的许多数学家,也对圆周率进行过研究,但都不如所他求的值精确,直到一千年后,由中亚的阿尔·卡希得到精确度为小数16位的圆周率。而此时已经有阿拉伯数字进行笔算。17世纪,瓦里斯给出了圆周率的有理式或极限形式。范瑟朗给出精确到35位小数的圆周率。1853年,番克斯计算π值,精确度达到小数607对位。

电子计算机出现以后,π的计算工作有了更大进展。1949年美国赖脱威逊用ENIAE计算机工作70小时求得π的2034位小数值。1973两位法国女数学家利用7600CDC型电子计算机得到100万位小数的π值。1983年计算到16777216位小数。现在有人已计算到上亿位,甚至10亿位。

在π的近似值的“马拉松”式的计算竞赛中,一直没有发现任何循环的现象。希望π是有理数的期望渐渐暗淡了,直到1761年德国数学家兰伯特征明了π是无理数。1882年,德国数学家林德曼借助于e(上标iπ)=-1证明了π是一个超越数。

为了实际计算的需要,这是π值计算的初衷,因为许多场合涉及到圆周率。但是,计算π的意义并不是单纯为了实际计算的需要,就近代科学所需要的精密度来说,即使需要几十亿分之一的精确度,也只不过需要用到π的10位小数就足够了。而关于π值多位数的计算却发现了它有许多迷人的性质。π的理论和性质可以有各种各样,它是一个深深的丰富的宝地,几千年来一直引起人们的极大兴趣,并且现在和将来还有人在不断地研究。

平方数之谜

一般,小学生就知道平方数,2(上标2)=4,3(上标2)=9,非常简单。可是现在许多与平方数有关的问题还在困扰着数学家。

17世纪法国数学家费马,本人原是律师,研究数学只是业余爱好。可是他的这种业余爱好,使他成为17世纪欧洲最重要的数学家之一。费马还有一个特点,他对数学规律的发现,大多数都是以猜想的形式提出的。也就是说,他只管提出结论,不管证明。

费马提出许多有关平方数的问题,下面介绍几个:

(1)1640年12月25田费马在给神父梅森的信中提出:一个形如4n+1的素数都可以表示成两个平方数之和。比如,5=4+1,13=9+4,17=16+1,29=25+4等等。

当然,费马对这个结果没有给出证明。100多年以后,瑞士数学家欧拉才结出了证明,并进一步证明了这种表达是惟一的。

(2)一个形如4n+1的素数,把它作为整数边直角三角形的斜边的机会只有一次。比如5,把它作为斜边,只有5(上标2)=3(上标2)+4(上标2)这样一种可能。如果把4n+1的素数平方,那么它作为斜边的机会就增加为两次;把它3次方之后就有3次等等。比如5,5的平方是25,而25(上标2)=15(上标2)+20(上标2)=7(上标2)+24(上标2);5的立方是125,而125(上标2)=75(上标2)+100(上标2)=35(上标2)+120(上标2)=44(上标2)+117(上标2)。这个问题后来也得到了解决。

(3)整数边直角三角形的面积不能是一个平方数。比如边长为3、4、5的直角三角形,它的面积是6个平方单位,而6不是一个平方数。

这个问题由法国数学家拉格朗日证明是对的。

但是有关平方数的问题很多,并不是都解决了。1770年英国数学家华林推测:每一个正整数都可以表示成4个平方数之和,9个3次方数之和,19个4次方数之和。

华林推测的第一部分,即每一个正整数都可以表示成4个平方数之和,提出不久被法国数学家拉格朗日证明了。

按照华林的想法,上面推测可以推广到更一般的形式:

对每个自然数是κ>1,存在一个常数S(κ),使每一个自然数可以表示为至多:S(κ)个(自然数)的κ次方的和。

比如,k=2,s(κ)=4,即对手每一个自然数都可以表示为至多4个2次方的和;κ=4,s(4)=19,意思是对于每一个自然数都可以表示为至多19个4次方的和。

这个问题的证明十分困难,使得数学家不知从何处下手。经过了很长时间的探索,1909年,德国著名数学家希尔伯特成功地证明了这个问题。英国数学家哈代称赞希尔伯特的工作是“现代数论的一座里程碑”。

但是,华林问题并没有全部解决。希尔伯特只是证明了:S(κ)的存在性,并没有给出确定S(κ)最小值的方法和数值。我们把s(κ)的最小值记为g(κ),按照华林的猜测,g(2)=4,g(3)=9,g(4)=19。

华林问题还没有完全解决,有人又从另一方面提出新的问题。保罗·图兰提出,什么样的正整数可以表示成两两互质的4个整数的平方和?他之所以这样提问题,是因为他确实发现了有不能表示的正整数。比如,他证明了形如8n的正整数8、16、32等等就不能;他又证明了形如6n+5的数11、17、23等等也不能。那么,究竟哪些数能表示呢?这个问题还在探讨中。

保罗·图兰还猜测,任何一个正整数都可以表示成两两互质的整数的平方和,其个数最多是5个。但是对于足够大的所有整数,能表示成恰好5个两两互质的平方数之和吗?至今也没得到肯定的证明。

华林推测,每一个正整数是9个立方数之和。有人嫌9个太多,提出每一个正整数能否表示成4个立方数之和?研究的结果表明,对于所有的正整数是做不到的。可是,除了形如9n±4的数以外,其他的数都可以做到。

有人又提出:每一个整数能否表示成4个立方数之和,并且其中有两个是一样的?也就是说,每一个整数能表示成x(上标3)+y(上标3)+2z(上标3)吗?这个问题对于许多数都没有解决,比如76、148、183、230、253等都不知道能否表示。

看来,这一个个“不知道”正等待着你来回答。

孪生质数之谜

一胎所生的哥俩叫孪生兄弟。你可知道,质数也有孪生的。数学上把相差为2的两个质数叫“孪生质数”或“双生质数”。

孪生质数并不少见,3和5,5和7,11和13,17和19,25和31等等都是孪生质数,再大一点的有101和103,1116957和10016959,还有1000000007和1000000009。数学家做过统计:

小于100000的自然数中有1224对孪生质数;

小于1000000的自然数中有8164对孪生质数;

小于33000000的自然数中有152892对孪生质数。

现在利用电子计算机找到的孪生质数已经是“天文数字”了,比如1159142985×2(上标2304)+1和1159142985×2(上标2304)-1。孪生质数会不会有无穷多对呢?这个问题吸引了许多人去研究,但至今没有解决。早在20世纪初,德国数学家兰道就推测孪生质数有无穷多对。许多事实也都支持兰道的猜想,可是一直就证明不出来。1919年,数学家布隆想出一个“妙招”,他去求所有孪生质数3和5、5和7、11和13……的倒数和,设这个和为B,有:

B=(1/3+1/5)+(1/5+1/7)+(1/11+1/13)+……

布隆想,如果能证明B比任何数都大,也就证明了孪生质数有无穷多对!这确实是一个很巧的方法。遗憾的是事与愿违,布隆证了半天,却证明出B一定是个有限数。看来布隆的道路走不通。后来人们就把B叫做“布隆常数”,并算出B=1.90216054……

布隆证明“孪生质数有无穷多对”虽然失败了,但他却证明了另一个有趣的结论:对于任一个整数m,都可以找到m个相邻的质数,其中没有孪生质数。

“孪生质数有无穷多对”这个猜想至今仍是一个未解之谜,目前最好的结果是我国数学家陈景润得到的,他于1966年证明了:有无穷多个质数P,能使P+2最多含有两个质数因子。

证明不了孪生质数是否有无穷多对,数学家就转而“攻击”另一个问题:孪生质数的分布情况。他们发现在1000以内有35对孪生质数;在10000以内有205对;在1亿以内有440312对。看来还真不算少。但是,孪生质数分布的一般规律至今还没有找到!

从孪生质数数学家又想到三生质数。如果三个质数A、B、C,其中B比A多2,而C又比B多4,那么质数A、B、C就叫做三生质数。比如5、7、11;11、13、17;17、19、23;101、103、107;10014491、10014493、10014497都是三生质数组。

三生质数组会不会有无穷多组呢?和孪生质数一样,这个问题至今也仍然是一个谜。

素数定理之谜

从乘法运算来看,素数应当是最简单的、最基本的。可是直到现在人们对于素数分布的规律仍然知之甚少,在这个领域内充满着问题与猜测。岁月流逝,问题依然,素数似乎是永恒的谜。其中素数定理之谜,就更是这一问题中的核心问题。

这里用π(χ)表示不超过(正实数)X的素数的个数,例如

π(10.5)=4不超过10.5的素数有4个:2,3,5,7。

当x趋于无穷时,π(x)也趋于无穷。但是π(x),也就是不超过x的素数个数大概有多大呢?它与x的大小有怎样的关系?这都是很难的问题,也是一个很重要的问题,是素数分布理论的中心问题。

1881年,英国数学家西尔维斯特发表了悲观的评论说:“我们或许要等待世界上产生这样一个人,他的智慧与洞察力像契贝谢夫一样,证明自己超人一等。”

当他说这段话时,他并不知道解决这个问题的数学家阿达玛等人已经诞生。他也没有注意到二十多年以前,也就是1859年,法国卓越的数学家黎曼已经在一篇文章中提供了解决这个问题的钥匙。

1896年,法国数学家阿达玛与德·拉·瓦利普松同时、独立地证明了素数定理。他们的证明都利用了黎曼1859年的那篇论文中的思想,利用了复变函数的理论。

又过了五十多年,挪威数学家塞尔贝格与匈牙利数学家厄尔多斯在1948年找到了不利用复变函数理论的“初等证明”。

同类推荐
  • 路易莎阿姨的趣味儿童故事

    路易莎阿姨的趣味儿童故事

    孩子一般都爱听故事。简短易懂而富有哲理的故事既可丰富孩子的知识面,又能引发孩子思考,启迪智力,并学会一些做人处世的道理。《国际大师儿童精品绘本系列:路易莎阿姨的趣味儿童故事》具有丰富有趣而富有教育意义的故事,还可以拓宽孩子的视野,并有助于孩子语言表达能力的培养,还可拉近亲子间的距离。
  • 星上天,弹着地

    星上天,弹着地

    中国共产党领导的社会主义新中国成立初期,满目疮痍!一穷二白!以美帝国主义为首的西方资本主义阵营,企图扼杀中华人民共和国于摇篮之中,美、法、德几个核大国,手里挥舞着核大棒,威胁中国和全人类和平。那时的中国,也想拥有自己的核武器来遏制西方核恐吓。可是,刚刚从国民党反动派手里夺回的红色政权,第一缺少的就是人才!第二缺少的还是人才!就在共和国最需要的时候,以钱学森为首的一批海外学子王淦昌、邓稼先、钱三强等,他们放弃了海外优厚的生活待遇,毅然决然回到祖国。
  • 春回天府(少儿卷)

    春回天府(少儿卷)

    每一个有呼吸、有生命迹象的地方都有迷彩的汪洋,白衣天使的汪洋,志愿者的汪洋,那是血脉连接起的长城内外、大江南北,甚至天涯,甚至海角,每一个肩膀扛起生命的重量。春天回来了……
  • 弟子规(国学启蒙书系列)

    弟子规(国学启蒙书系列)

    弟子规具体列举出为人子弟在家、出外、待人接物、求学应有的礼仪与规范,特别讲求家庭教育与生活教育。是启蒙养正,教育子弟敦伦尽份防邪存诚,养成忠厚家风的最佳读物
  • 让孩子受益一生的经典成语故事100篇

    让孩子受益一生的经典成语故事100篇

    成语是中华民族智慧的结晶,它们就像一颗颗璀璨的明珠,在洁瀚的历史长空中,散发出夺目的光彩。每一则成语都有一个源头,或是历史故事,或是古代寓言,无不包含着古人的智慧。可以说,它们是每一代中华人成长过程中的好朋友。为了让小朋友更健康成长,我们选编了这套成语故事。通过通俗易懂,生动的语言叙述,辅以活泼清新的插图,还在每则故事后面附上浅显的理解。在合适的地方加上与内容有关的小知识,还有妙趣横生的互动板块。深入浅出,寓教于乐,开阔小朋友的视野,启迪他们的智慧。我们还给故事加注了拼音,便于已上学的小朋友自己阅读。我们坚信,这套书会让孩子一生受益。
热门推荐
  • 他身上有条龙

    他身上有条龙

    谁说纹身的都是流氓?且看因为爱人背叛而投身军旅,三年后从神秘部队退役,拥有真龙纹身的最强王牌回归都市,叱咤风云,无敌天下!
  • 傻子王爷无情妃

    傻子王爷无情妃

    一只毒蝎子,彻底断送了她年轻的生命!别人只知道,那个软弱没主见的女人被迫嫁给一个痴傻呆闷的七皇子。殊不知,她早已不再是“她”!面对痴傻只会憨笑的美男,她气愤难填!你傻,本美女就医好你,谁知医好后,遭到嫌弃,却换来一纸休书,气愤之下,她恨不得与他同归于尽……
  • 奸细

    奸细

    高考前夕,各校会动用资源和手段将其他学校尖子生弄到自己学校。徐瑞星是班主任,另一个学校的黄川就希望通过经济贿赂的办法,让他透露出自己学校里“好学生”的信息。徐瑞星不愿意这么干,但是出于种种原因,他还是当了“奸细”。
  • 笑面罗刹

    笑面罗刹

    姿色平平的女子,恬淡的笑容,司马家没脾气的三小姐。不显山,不显水,她是天山上雪老的关门弟子。“一个月内,把为师教的都学会,知道了吗?”仙风道骨的雪老刻意板着脸吩咐下面的弟子。“是,师傅”如出一辙的抬头,斜眼,懒懒的回答,准备散开,不想理会这个闲得无聊的老头子。“笑儿”古怪的撒娇声出自雪老之口,对象却是一个稚龄女童,淡淡的微笑挂在嘴角。“听到师傅的话了吗?”温柔的语气像是在询问。“是,师妹”整齐而洪亮的回答,却让一旁的雪老再一次的暗自落泪,师傅竟然不如徒弟有威信。不胆怯,不畏惧,面上依然是淡淡的微笑,她是幽萝谷谷主的唯一传人。“禀谷主,叛徒已捉拿回谷,请谷主明示”蒙面的黑衣人指着同时被扔在地上跪着的几个男子,恭敬的等候幽萝谷谷主吩咐。“背叛我的人,从来就只有死路一条”谷主阴沉的吐出,却见下面跪着的人反而露出了解脱的神色。“笑儿,交给你了”同样蒙面的黑衣谷主看向这里唯一的一个露出真面目的少女。“请谷主饶命啊,小的一定知无不言言无不尽“此起彼伏的求饶声顿时响彻了整个幽萝谷。新文:《嚣张宝贝黑道妈》完结经典文:《大良凰后》《笑面罗刹》《随心皇妃》《玉面狐狸》
  • 爱尔兰咖啡

    爱尔兰咖啡

    相传,酒保为了心仪的女孩,将威士忌融合入热咖啡,发明了爱尔兰咖啡。咖啡的芬芳搭配烈酒的浓醇,在冷冽的夜里让人从掌心一路温暖到心底。一个四分之一爱尔兰血统的台北女孩,就因为听到这个故事,坚持煮出正统的爱尔兰咖啡,而且只在晚上十二点后供应。于是,爱情,就在某个雨夜中,迎着咖啡温柔的香气,得到诞生的灵感。一间小小的咖啡馆,一盏小小的灯,一个异乡的男子,邂逅了一位女孩。他对她的思念,从此再也分不清楚是对爱的想望,或是对咖啡的渴望了……
  • 喵喵,王子殿下

    喵喵,王子殿下

    我!超级无敌美少女伊莉雅,最大的心愿就是加入社团,实现自己的价值!! 虽然在这条路上屡败屡战,但在16岁时,我终于成为了自由会社的新社员! 可是……我在入社的第一天就遇见了一个神秘美少年,而且我还发现了他的秘密——他居然会冒出猫耳朵!!这究竟是怎么回事? 浪漫清新恋爱自由式!不可思议的恋人,不可思议的爱恋,喵星来的王子大作战!
  • 千金有毒:Boss的落跑新娘

    千金有毒:Boss的落跑新娘

    “签了它!”他目光幽深语气清冷,一纸契约宣告他的占有。“敢碰我的女人,杀无赦!”他狠辣果决,一怒为红颜。“叶晚晴,你不过是仗着我宠你……滚!”他宠她上天,弃她入地狱。她浅浅一笑,华丽转身,“唐少,但愿不再见。”他步步紧逼,咬牙切齿,“女人,我说过,除非我厌弃,你终生都是我的……”
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 不懂带团队,你就自己累

    不懂带团队,你就自己累

    团队执行力的强弱决定一个企业的成败。如何建设和管理一个团队,是全球职场中高层管理者面临的最重要的问题。世界上最一流的高管并非把所有问题都自己扛,而是培养一群善于解决问题的人。你只需做20%重要的事,其余80%的事都可以交给他们。《不懂带团队,你就自己累》以世界500强企业都在运用的团队管理法则为基础,针对如何建立领导力、完善制度、高效沟通、科学考核、执行力、时间管理等团队管理中的常见问题,提出简单、高效、实用的解决方法,教你打造最强团队,提升管理水平,实现管理和业绩双赢!
  • 随心皇妃

    随心皇妃

    异世的灵魂,孤独中寻求一丝安定的温暖,然而,现实总是让她受尽磨难,未婚夫婿的不加信任,丈夫的暗藏杀机,让她几度飘零。。。。。。。。。。。。。。。。。。。。。。。。。。。新文:《睡睡平安之流氓公主》《男人,你被劫持了!》完结经典文:《大良凰后》《笑面罗刹》《随心皇妃》《玉面狐狸》