登陆注册
2379700000003

第3章 数学之谜(3)

公元263年,魏晋时期的刘徽在《九章算术法》中,首创周“割圆术”去求圆周率。即通过不断倍增圆内接正多边形的边数来求圆周长的方法。刘徽从计算国内接正六边形开始(此时边长等于半径),再计算正12边形周长,即将圆周12等分,进而正24边形,正48边形,直算到正192边形,即将圆周192等分,用其周长去近似表示国的周长。并说:“割之弥细,所失弥少。割之又割,以至于不可割,则与圆周合体,而无所失矣。”这就是说,当圆内接正多边形边数无限增加时,这个正多边形的周长,就无限逼近圆的周长。这种“无限逼近”的思维方法正是近代数学基础的极限思维方式。这种极限思维方式,虽早在春秋时代庄子的书中就有了,但将这种极限思维用于解决数学问题,刘徽乃第一人。

刘徽计算圆内按正192边形求圆周率,可不是简单的事。当时计算工具还十分落后,要计算是用筹算,得拿一捆细的棍棒(称为算筹)摆弄半天才算得一个数。算圆内接正多边形的边数每翻一番,至少要进行7次运算。其中除了加减运算还要计算2次乘方和2次开方。刘徽算到正192边形,边数翻了5番,算出的圆周率为3.141024与3.142704之间。可想而知,用筹算进行超过六位小数的乘方运算及开方运算,这需要多么熟练的运算技巧,需要多么顽强的毅力。刘徽算出的圆周率,虽然精确度只是3.14,但他开创的“割圆术”,以及对许多数学问题独创性的见解,使他受到世人的赞誉。

3.祖冲之创造的世界纪录

公元5世纪中国南北朝时期,祖冲之“专政数术,搜练古今,博采沉奥”,成为我国古代最伟大的数学家、天文学家、机械学家。

祖冲之祖籍范阳遒(今河北省沫水县北)人,公元429年生于江南。他祖上几代人都研究历法,受家庭熏陶,祖冲之自幼便对数学和天文产生了浓厚的兴趣。他年轻时胸怀雄心壮志,学习非常刻苦勤奋,阅读和研究了有关天文、数学的大量著作,同时又注重实际观测。经过长期钻研磨练,终于成为杰出的学者。

祖冲之青年时代曾在刘宋政府的华林省从事研究工作,后升任南徐州(今镇江)从事史,继又赴建康(今南京)任公府参军,渴者什射(朝廷礼书官),长水校尉等职。祖冲之就在这“江南佳丽地,金陵帝王州”度过了他一生的主要时光。

祖冲之对世界最大的贡献就是对圆周率的研究。据《隋书·律历志》记载,祖冲之求得“以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,助教三丈一尺四寸一分五厘九毫二秒六忽,正数在盈肭二限之间。密率:圆径一百十三,圆周三百五十五;约率:圆径七圆周二十二。”这就是说,祖冲之求出的结果为:

3.1415926<圆周率<3.1415927

密率:355/113,约率:22/7这个精确到小数点后七位的圆周率,在当时是非常了不起的成就。这个世界级的精确度,由祖冲之创造,并由他保持了一千年,直到15世纪,才由中亚的阿尔·卡希打破,得到精确到小数16位的值。

在筹算的时代,祖冲之是怎样求出精确到7位小数的圆周率值呢?说来真是遗憾。祖冲之写了一本非常优秀的数学著作《缀术》,其中包括了对国周率的研究及成果,以及其他的丰富内容,该书曾被唐国子监和朝鲜、日本用做算术课本。但隋唐时“学官莫能究其深奥,是故废而不理”。这就是说,在隋唐那个重文轻理的时代,当官的多不懂数学,祖冲之著的《馈术》,他们根本就看不懂,因此当废物弃之。到了北宋的1084年刻印各种算经时就找不见《缀术》,失传了。这不能不说是世界数学史上的重大损失。因此,祖冲之到底怎样算出圆周率值的,也就成了千古之谜。

后世数学家也多有研究这千古之谜的,总想探求祖冲之求圆周率的方法。若祖冲之是在前人成就的基础上,用“割圆术”去求圆周率,那么从圆内按正六边形开始,要将其边数翻11番,算到圆内接正12288边形,才能得到这样精确度的值。若用密率355/133作为圆周率,计算一个直径10公里的圆周长,结果只比真值还不大到3毫米。从这我们可以看到,祖冲之在求圆周率时的艰辛,以及所求圆周率的精确程度。我国自汉代便存在着“连分数术”。近代多有人认为祖冲之是用此法求的圆周率。但当时只能用筹算去算数,按精确到小数点7位去计算,那么,小数至少要保留12位,而12位小数的一次乘方和开方,就决非易事。无论他采用何种方法,在当时的条件下,祖冲之能算出精确到七位小数的圆周率是多么的不容易。正是这不容易,才构成了祖冲之的伟大,才使中国的数学在全世界独领风骚1000年。

祖冲之成为中华民族的骄傲,人们将它的“密率”称为“祖率”。人类为了纪念这位数学家,将月球背面发现的一个环形山谷,命名为“祖冲之山谷”。

4.π值的近代计算

祖冲之之后的许多数学家,也对圆周率进行过研究,但都不如所他求的值精确,直到一千年后,由中亚的阿尔·卡希得到精确度为小数16位的圆周率。而此时已经有阿拉伯数字进行笔算。17世纪,瓦里斯给出了圆周率的有理式或极限形式。范瑟朗给出精确到35位小数的圆周率。1853年,番克斯计算π值,精确度达到小数607对位。

电子计算机出现以后,π的计算工作有了更大进展。1949年美国赖脱威逊用ENIAE计算机工作70小时求得π的2034位小数值。1973两位法国女数学家利用7600CDC型电子计算机得到100万位小数的π值。1983年计算到16777216位小数。现在有人已计算到上亿位,甚至10亿位。

在π的近似值的“马拉松”式的计算竞赛中,一直没有发现任何循环的现象。希望π是有理数的期望渐渐暗淡了,直到1761年德国数学家兰伯特征明了π是无理数。1882年,德国数学家林德曼借助于e(上标iπ)=-1证明了π是一个超越数。

为了实际计算的需要,这是π值计算的初衷,因为许多场合涉及到圆周率。但是,计算π的意义并不是单纯为了实际计算的需要,就近代科学所需要的精密度来说,即使需要几十亿分之一的精确度,也只不过需要用到π的10位小数就足够了。而关于π值多位数的计算却发现了它有许多迷人的性质。π的理论和性质可以有各种各样,它是一个深深的丰富的宝地,几千年来一直引起人们的极大兴趣,并且现在和将来还有人在不断地研究。

平方数之谜

一般,小学生就知道平方数,2(上标2)=4,3(上标2)=9,非常简单。可是现在许多与平方数有关的问题还在困扰着数学家。

17世纪法国数学家费马,本人原是律师,研究数学只是业余爱好。可是他的这种业余爱好,使他成为17世纪欧洲最重要的数学家之一。费马还有一个特点,他对数学规律的发现,大多数都是以猜想的形式提出的。也就是说,他只管提出结论,不管证明。

费马提出许多有关平方数的问题,下面介绍几个:

(1)1640年12月25田费马在给神父梅森的信中提出:一个形如4n+1的素数都可以表示成两个平方数之和。比如,5=4+1,13=9+4,17=16+1,29=25+4等等。

当然,费马对这个结果没有给出证明。100多年以后,瑞士数学家欧拉才结出了证明,并进一步证明了这种表达是惟一的。

(2)一个形如4n+1的素数,把它作为整数边直角三角形的斜边的机会只有一次。比如5,把它作为斜边,只有5(上标2)=3(上标2)+4(上标2)这样一种可能。如果把4n+1的素数平方,那么它作为斜边的机会就增加为两次;把它3次方之后就有3次等等。比如5,5的平方是25,而25(上标2)=15(上标2)+20(上标2)=7(上标2)+24(上标2);5的立方是125,而125(上标2)=75(上标2)+100(上标2)=35(上标2)+120(上标2)=44(上标2)+117(上标2)。这个问题后来也得到了解决。

(3)整数边直角三角形的面积不能是一个平方数。比如边长为3、4、5的直角三角形,它的面积是6个平方单位,而6不是一个平方数。

这个问题由法国数学家拉格朗日证明是对的。

但是有关平方数的问题很多,并不是都解决了。1770年英国数学家华林推测:每一个正整数都可以表示成4个平方数之和,9个3次方数之和,19个4次方数之和。

华林推测的第一部分,即每一个正整数都可以表示成4个平方数之和,提出不久被法国数学家拉格朗日证明了。

按照华林的想法,上面推测可以推广到更一般的形式:

对每个自然数是κ>1,存在一个常数S(κ),使每一个自然数可以表示为至多:S(κ)个(自然数)的κ次方的和。

比如,k=2,s(κ)=4,即对手每一个自然数都可以表示为至多4个2次方的和;κ=4,s(4)=19,意思是对于每一个自然数都可以表示为至多19个4次方的和。

这个问题的证明十分困难,使得数学家不知从何处下手。经过了很长时间的探索,1909年,德国著名数学家希尔伯特成功地证明了这个问题。英国数学家哈代称赞希尔伯特的工作是“现代数论的一座里程碑”。

但是,华林问题并没有全部解决。希尔伯特只是证明了:S(κ)的存在性,并没有给出确定S(κ)最小值的方法和数值。我们把s(κ)的最小值记为g(κ),按照华林的猜测,g(2)=4,g(3)=9,g(4)=19。

华林问题还没有完全解决,有人又从另一方面提出新的问题。保罗·图兰提出,什么样的正整数可以表示成两两互质的4个整数的平方和?他之所以这样提问题,是因为他确实发现了有不能表示的正整数。比如,他证明了形如8n的正整数8、16、32等等就不能;他又证明了形如6n+5的数11、17、23等等也不能。那么,究竟哪些数能表示呢?这个问题还在探讨中。

保罗·图兰还猜测,任何一个正整数都可以表示成两两互质的整数的平方和,其个数最多是5个。但是对于足够大的所有整数,能表示成恰好5个两两互质的平方数之和吗?至今也没得到肯定的证明。

华林推测,每一个正整数是9个立方数之和。有人嫌9个太多,提出每一个正整数能否表示成4个立方数之和?研究的结果表明,对于所有的正整数是做不到的。可是,除了形如9n±4的数以外,其他的数都可以做到。

有人又提出:每一个整数能否表示成4个立方数之和,并且其中有两个是一样的?也就是说,每一个整数能表示成x(上标3)+y(上标3)+2z(上标3)吗?这个问题对于许多数都没有解决,比如76、148、183、230、253等都不知道能否表示。

看来,这一个个“不知道”正等待着你来回答。

孪生质数之谜

一胎所生的哥俩叫孪生兄弟。你可知道,质数也有孪生的。数学上把相差为2的两个质数叫“孪生质数”或“双生质数”。

孪生质数并不少见,3和5,5和7,11和13,17和19,25和31等等都是孪生质数,再大一点的有101和103,1116957和10016959,还有1000000007和1000000009。数学家做过统计:

小于100000的自然数中有1224对孪生质数;

小于1000000的自然数中有8164对孪生质数;

小于33000000的自然数中有152892对孪生质数。

现在利用电子计算机找到的孪生质数已经是“天文数字”了,比如1159142985×2(上标2304)+1和1159142985×2(上标2304)-1。孪生质数会不会有无穷多对呢?这个问题吸引了许多人去研究,但至今没有解决。早在20世纪初,德国数学家兰道就推测孪生质数有无穷多对。许多事实也都支持兰道的猜想,可是一直就证明不出来。1919年,数学家布隆想出一个“妙招”,他去求所有孪生质数3和5、5和7、11和13……的倒数和,设这个和为B,有:

B=(1/3+1/5)+(1/5+1/7)+(1/11+1/13)+……

布隆想,如果能证明B比任何数都大,也就证明了孪生质数有无穷多对!这确实是一个很巧的方法。遗憾的是事与愿违,布隆证了半天,却证明出B一定是个有限数。看来布隆的道路走不通。后来人们就把B叫做“布隆常数”,并算出B=1.90216054……

布隆证明“孪生质数有无穷多对”虽然失败了,但他却证明了另一个有趣的结论:对于任一个整数m,都可以找到m个相邻的质数,其中没有孪生质数。

“孪生质数有无穷多对”这个猜想至今仍是一个未解之谜,目前最好的结果是我国数学家陈景润得到的,他于1966年证明了:有无穷多个质数P,能使P+2最多含有两个质数因子。

证明不了孪生质数是否有无穷多对,数学家就转而“攻击”另一个问题:孪生质数的分布情况。他们发现在1000以内有35对孪生质数;在10000以内有205对;在1亿以内有440312对。看来还真不算少。但是,孪生质数分布的一般规律至今还没有找到!

从孪生质数数学家又想到三生质数。如果三个质数A、B、C,其中B比A多2,而C又比B多4,那么质数A、B、C就叫做三生质数。比如5、7、11;11、13、17;17、19、23;101、103、107;10014491、10014493、10014497都是三生质数组。

三生质数组会不会有无穷多组呢?和孪生质数一样,这个问题至今也仍然是一个谜。

素数定理之谜

从乘法运算来看,素数应当是最简单的、最基本的。可是直到现在人们对于素数分布的规律仍然知之甚少,在这个领域内充满着问题与猜测。岁月流逝,问题依然,素数似乎是永恒的谜。其中素数定理之谜,就更是这一问题中的核心问题。

这里用π(χ)表示不超过(正实数)X的素数的个数,例如

π(10.5)=4不超过10.5的素数有4个:2,3,5,7。

当x趋于无穷时,π(x)也趋于无穷。但是π(x),也就是不超过x的素数个数大概有多大呢?它与x的大小有怎样的关系?这都是很难的问题,也是一个很重要的问题,是素数分布理论的中心问题。

1881年,英国数学家西尔维斯特发表了悲观的评论说:“我们或许要等待世界上产生这样一个人,他的智慧与洞察力像契贝谢夫一样,证明自己超人一等。”

当他说这段话时,他并不知道解决这个问题的数学家阿达玛等人已经诞生。他也没有注意到二十多年以前,也就是1859年,法国卓越的数学家黎曼已经在一篇文章中提供了解决这个问题的钥匙。

1896年,法国数学家阿达玛与德·拉·瓦利普松同时、独立地证明了素数定理。他们的证明都利用了黎曼1859年的那篇论文中的思想,利用了复变函数的理论。

又过了五十多年,挪威数学家塞尔贝格与匈牙利数学家厄尔多斯在1948年找到了不利用复变函数理论的“初等证明”。

同类推荐
  • 越玩越聪明大全集

    越玩越聪明大全集

    本书精选哈佛大学、耶鲁大学、北京大学、清华大学等世界著名高校给学生做的思维游戏,挑战读者的想象力、创造力、观察力、思考力、判断力和推理能力。让读者和全世界聪明人一起思考,打破僵化的思维模式,激发无限的大脑潜能,掌握前卫的思考模式,赢得更多改变人生的机会。
  • 兔子彼得和他的朋友

    兔子彼得和他的朋友

    在世界儿童文学长廊里,活跃着一只古老而又年轻、顽皮而又惹人喜爱的兔子--彼得。1902年,他以在花园里狼狈逃窜、丢掉了蓝上衣的形象首次亮相,随后,他和他的伙伴们便一个接一个地以不可抗拒的魔力闯进了数以千万计孩子的童年生活。淘气而又胆小怕事的兔子彼得,不知天高地厚的松鼠特纳金,不谙世事而却又颇有主张的水鸭杰迈玛,勤劳的刺猬提吉o温克夫人,爱搞破坏的小老鼠露辛达和简……他们可爱、调皮、爱犯懒,时不时有点小脾气。书中的画面将孩子们的日常世界与幻想世界结合到一起,字里行间洋溢着友情和爱心的温馨。
  • 秘密花园

    秘密花园

    玛丽·林洛克斯被送到密塞威特庄园去跟她叔叔一起住的时候,所有人都说她是自己见过的长得最不招人喜欢的孩子。这是真的……
  • 宇宙环游(走进科学)

    宇宙环游(走进科学)

    本套书全面而系统地介绍了当今世界各种各样的难解之谜和科学技术,集知识性、趣味性、新奇性、疑问性与科普性于一体,深入浅出,生动可读,通俗易懂,目的是使广大读者在兴味盎然地领略世界难解之谜和科学技术的同时,能够加深思考,启迪智慧,开阔视野,增加知识,能够正确了解和认识这个世界,激发求知的欲望和探索的精神,激起热爱科学和追求科学的热情,不断掌握开启人类世界的金钥匙,不断推动人类社会向前发展,使我们真正成为人类社会的主人。
  • 许愿花的秘密(魔力校园)

    许愿花的秘密(魔力校园)

    徐佳佳是新来的转学生,她用高傲的性格掩饰自己的孤独。有一天,徐佳佳得到了许愿花的种子。她不断许愿,却发现种子居然融入了她的掌心!从国外回来的欧阳老师藏着一个可怕的秘密,他想占据城市里藏着的宝物,因此不惜将吞噬植物灵力的虫灵引入到学校……
热门推荐
  • 尼玛!医神你不要这么冷

    尼玛!医神你不要这么冷

    我在你不要的世界里,何苦不找个人来代替。可惜我谁劝都不听……这其实是一个阴沉医生老师带着一个迷糊医学生的故事。,我宁愿留在你方圆几里,至少能感受你的悲喜,在你需要我的时候就能陪你
  • 决定一生成功的十大素质

    决定一生成功的十大素质

    《决定一生成功的十大素质》从总体上分析成为成功人士的必备素质,它们包括健康的身心、合理的情感、高超的智慧、高贵的人格、成功的形象、深厚的文化底蕴、过硬的专业素质及良好的个人修养等。这些素质涵盖一个人最基础、最必需的成功条件,它为我们从自身着眼开创成功指明了强化的方向。
  • 冷酷总裁的前妻

    冷酷总裁的前妻

    ★第一部:关澈VS常予欢---【冷酷总裁的前妻】:她以为他爱她,谁知他的温柔,他的深情,却给予另一个女人。后来才知道,她是破坏他爱情的罪魁祸首。而他对她的感情却是一场欺骗!既然这样,她又何必留恋他施舍的温柔呢?她扬起高傲的下巴,冷然的看着他。「你知道吗?你现在不要我,那会是你这辈子最大的损失,不是我的,总有一天你会发现,我是最好的那一个,可是你已经失去这个机会了,你再也无法得到我了……到那时,我一定已经爱上别人了。」……最后,一张离婚纸结束了他们之间的关系……三年后,在一个国际性的珠宝展览会,他和她再次重逢,她真实现那年离去时搁下的话,她的温柔,她的美丽,她的爱,已给了另一个男人,而这个男人竟然是……◇................◇.................◇★第二部:北堂傲VS关海潮---【总裁的前女友】简介:因为对他一见钟情,所以,她愿意倒追他,老天,终于让她如愿以偿,将他拐进礼堂,却在圣坛发誓相守一生时,他的私生子突然跑出来。私生子?他竟然有私生子?还有个旧情人?老天!这婚她到底结不结?不!她当然不能委屈自己,他有私生子,为什么她不能有情人?结果,一夜的失误,一个月后,她竟然怀孕了,孩子他爸竟然是个陌生人?(一对一HF)◆通常,每一个内心强大的女人背后都有一个让她成长的男人,一段让她大彻大悟的感情经历,一个把自己逼到绝境最后又重生的蜕变过程。
  • 异世剑神之倾城小姐

    异世剑神之倾城小姐

    她是身世显赫的帝国四小姐,却从小不被重视养在深山,习得绝世武功。在无意救了一个刺客,意外得知了自己身上秘密的线索,开始漫长的探索之路。她倾国倾城的容貌,成为了擂台的筹码。她机智聪慧,却陷入了情网不能自拔。两个爱她的男子为了她拼劲性命,只为得到她的真心。三族的是非恩怨,她又将会如何扭转乾坤?离奇的身世,绝世身手,在这个三族鼎力的历史舞台,她将如何将强的生存下去?女主性格多变,是针对不同的男士而议的,但绝对不是NP,结局一对一,男主虽然花心,但绝对干净。
  • 冷情王爷下堂妃

    冷情王爷下堂妃

    “第一条,不许和别的男人眉来眼去;第二条,不许在我的面前提到他;第三条、、”“傲天,你太霸道了!”“霸道!没错!我就是霸道!谁叫你是一名下堂的妃!”心在跳,情已销,妒火在燃烧!
  • 心理暗示的力量

    心理暗示的力量

    心理暗示分为自我暗示和他人暗示,能对人产生积极和消极两个方面的影响。《心理暗示的力量》详细介绍了心理暗示产生的原因、其蕴涵的潜在能量,以及运用这种能力的技巧,能让读者真真切切地感悟到暗示的力量,从而掌握并运用这种力量,获得人生的成功。《心理暗示的力量》由牧之编著。
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 明星青梅的专属竹马

    明星青梅的专属竹马

    宁熙葵:我们之间不是咫尺天涯的形同陌路,不是天涯比邻的一往情深,而是不远不近,永远无法有交集。无论我多努力想要靠近你,你却总把我推开。聂寒跖:只有这样不远不近的距离才能让我一直爱着你,对于我而言,你是阳光,然而我身处黑暗。我不能让你离我太近,我怕你会被伤害得遍体鳞伤。他,身处黑暗,职业杀手,成立杀手组织,黑暗的主宰。她,身处聚光灯下,以阳光微笑为标志的明星。他与她居然是所谓的青梅竹马。当她爱上他,他不懂什么是爱;当她选择离开,他发现早已爱上了她。曾经选择离去的她再次归来,拥有了另一个全新的身份。“为了你我愿意坠落黑暗的深渊,但如果你不爱我,我会选择忘记你,再相见我们已是陌路人。”“如果我的爱只会让你受到伤害,我唯有用我的绝情让你离开。”“你既然不爱我,为什么要跟我上床?”“我从未说过我不爱你。”“但你也从未说过你爱我。”“我爱你,一直爱着你。”“我曾经让你离开,我的心再次冰冷,这一次我绝不放手。”“我曾以为永远温暖不了你的心,原来是我错了。”“我杀过很多人,如果上天一定要我偿命的话,我只准你要我的命。”“既然你的命是我的,别人不能要你的命。”
  • 做人别缺好心态

    做人别缺好心态

    低调的人,内心深处蕴藏着勃勃生机和无限活力,处于低谷而不消沉,遇到困难从不退缩,永远保持着理性、豁达、睿智的处世态度。大智若愚的背后,隐含的是真正的大智慧。
  • 明治天皇:孝明帝驾崩卷(下册)

    明治天皇:孝明帝驾崩卷(下册)

    《明治天皇》再现了日本从幕末走向明治维新的历史变革,以优美的文笔,宏大的场景,详细描绘了日本近代决定国运的倒幕运动的整个过程。本书塑造了一个个鲜活的日本近代史人物形象,以及他们的坚定信念,对“安政大狱”、“樱田门之变”等重大历史事件的描述详实生动,是一部了解近代日本不可多得的佳作。