登陆注册
3237100000008

第8章

于是就求出了x的值。在代数学的符号系统发展起来之前,“双设法”是中世纪欧洲解决算术问题的一种主要方法,并得到广泛的应用。十三世纪着名的意大利数学家斐波那契,最早介绍了这种方法,并把它叫做“阿尔-契丹耶(elchataym)”,这显然是阿拉伯语的音译。因为在11~13世纪,这种方法就引起了阿拉伯数学家的重视,并称之为“契丹算法”。另一方面,我们知道当时阿拉伯人所说的“契丹”,实际上就指的是中国。“契丹算法”就是“中国算法”。由此看来,“双设法”追本溯源应该来自中国,来自中国古代的“盈不足术”。正是我国早已有之的“盈不足术”很可能经由阿拉伯传入欧洲,在欧洲数学发展中起了重要的作用。

“盈不足”又称“盈朒(róu),是我国古代解决“盈亏类”问题的一种算术方法,“盈”就是“多”,“不足”就是“少”。我国古代数学名着《九章算术》里有一章就叫做“盈不足”,其中第一个问题是:“今有共买物,人出8,盈3;人出7,不足4。问人数、物价各几何?”这道题的题意是:现在有几个人合起来买东西。如果每人出8元,则多3元;如果每人出7元,则少4元。问人数和物价各是多少?《九章算术》给出了这个问题的一般解法,我们用现在的代数式来表示:设每人出a1,盈(或不足)b1;每人出a2,盈(或不足)b2。其中,在盈的情况下,b1,b2>0,不足时,b1,b20。于是,人数p或物价q可由下列公式计算出来:

p=b1-b2a1-a2q=a2b1-a1b2a1-a2。在上述问题中,由这两个公式可得人数p=7(人),物价q=53(元)。

“盈不足术”是中国古代数学的一项杰出成就。用“盈不足”算法,不仅能解决盈亏类问题,而且还能解决一些较复杂的问题。例如,设好地一亩产粮300斤,次地七亩产粮500斤;现在有一顷地共产粮1万斤;问好地和次地各有多少亩?这道题虽然没有给出“盈”和“不足”的数值,但可以假定有好地20亩,次地80亩,于是,可算出这种情况应多产粮171427斤。如果假定有好地10亩,次地90亩,则应少产粮57137。因此,根据上述公式即可算出好的有12亩半,次地有87亩半。

当然,应用我们学到的一次方程或二次方程等代数知识,很容易解决日常遇到的算术难题,不必多此一举地再用“盈不足术”了。但在高等数学范围内,有时还要用盈不足术推求高次数字方程或函数实根的近似值。

牛顿问题

牛顿是17世纪英国最着名的数学家。他不仅勇于探索高深的数学理论,也很重视数学的普及教育,曾专门为中学生编写过一套数学课本。牛顿认为:“学习科学时,题目比规则还有用些。”所以在书中编排了许多复杂而又有趣的数学题,用来锻炼学生的数学思维能力。下面这个题目就是书中一道着名的习题。

“有3块草地,面积分别是313顷、10顷和24顷。草地上的草一样厚,而且长得一样快。如果第一块草地可以供12头牛吃4个星期,第二块草地可以供21头牛吃9个星期,那么,第三块草地恰好可以供多少牛吃18个星期?”

这个题目的确复杂而又有趣。因为在几个月的时间里,被牛吃过的草地还会长出新的青草来,而这青草的生长量,又因时间的长短、面积的大小而各不相同!

牛顿潜心研究过这个题目,发现好几种不同的解法。他认为,下面这种比例解法最为有趣。

首先,假设草地上的青草被牛吃过以后不再生长。因为“313顷草地可以供12头牛吃4个星期”,按照这个比例,10顷草地就可以供8头牛吃18个星期,或者说可以供16头牛吃9个星期。

由于实际上青草被牛吃过以后还会生长,所以题中说:“10顷草地可以供四头牛吃9个星期。”把这两个结论比较一下就会发现,同样是10顷草地,同样是9个星期,却可以多养活21-16=5头牛。

这5头牛的差额表明,在9个星期的后5周里,10顷草地上新生的青草可供5头牛吃9个星期。也就是说,可以供25头牛吃18个星期。

那么,在18个星期的后14周里,10顷草地上新生的青草可供多少头牛吃18个星期呢?5∶14=25∶?,不难算出答案是7头牛。

接下来综合考虑18个星期的各种情况。

前面已经算出,假定青草不生长时,10顷草地可以供8头牛吃18个星期;考虑青草生长时,10顷草地上新生的青草可以供7头牛吃18个星期。因此,10顷草地实际可以供8+7=15头牛吃18个星期。按照这个比例,就不难算出24顷草地可以供多少头牛吃18个星期了。

10∶24=15∶?

显然。“?”处应填36,36就是整个题目的答案。

欧拉问题

大数学家欧拉也很重视数学的普及教育。他经常亲自到中学去讲授数学知识,为学生编写数学课本。尤其感人的是,1770年,年迈的欧拉双目都已失明了,仍然念念不忘给学生编写《关于代数学的全面指南》。这本着作出版后,很快就被译成几种外国文字流传开来,直到20世纪,有些学校仍然用它作基本教材。

为了搞好数学普及教育,欧拉潜心研究了许多初等数学问题,还编了不少有趣的数学题。也许因为欧拉是历史上最伟大的数学家之一,这些题目流传特别广。例如,在各个国家的数学课外书籍里,都能见到下面这道叫做“欧拉问题”的数学题。

“两个农妇共带了100只鸡蛋去集市上出售。两人的鸡蛋数目不一样,赚得钱却一样多。第一个农妇对第二个农妇说:‘如果我有你那么多的鸡蛋,我就能赚15枚铜币。’第二个农妇回答说:‘如果我有你那么多的鸡蛋,我就只能赚623枚铜币。’问两个农妇各带了多少只鸡蛋?”

历史上,像这样由对话形式给出等量关系的题目并不少见。例如公元前3世纪时,古希腊数学家欧几里得曾编了一道驴和骡对话的习题:

“驴和骡驮着货物并排走在路上,驴不住地抱怨驮的货物太重,压得受不了。骡子对它说:‘你发什么牢骚啊!我驮的比你更重。如果你驮的货物给我1口袋,我驮的货物就比你重1倍;而我若给你1口袋,咱俩才刚一般多。’问驴和骡各驮了几口袋货物?”

12世纪时,印度数学家婆什迦罗也曾编了一道相似的习题:

“某人对一个朋友说:‘如果你给我100枚铜币,我将比你富有2倍。’朋友回答说:‘你只要给我10枚铜币,我就比你富有6倍。’问两人各有多少铜币?”

但是,“欧拉问题”却编出了新意,由于两种“如果”出的答数无倍数关系可言,使得题中蕴含的等量关系更加行踪难觅,解题途径与上述两题也不相同。

下面是欧拉提供的一种解法。

假设第二个农妇的鸡蛋数目是第一个农妇的m倍。因为最后两人赚得的钱一样多。所以,第一个农妇出售鸡蛋的价格必须是第二个农妇的m倍。

如果在出售之前,两个农妇已将所带的鸡蛋互换,那么,第一个农妇带有的鸡蛋数目和出售鸡蛋的价格,都将是第二个农妇的m倍。也就是说,她赚得的钱数将是第二个农妇的m2倍。

于是有m2=15∶623。

舍去负值后得m=3/2,即两人所带鸡蛋数目之比为3∶2。这样,由鸡蛋总数是100,就不难算出题目的答案了。

想出这种巧妙的解法是很不容易,连一贯谨慎的欧拉也忍不住称赞自己的解法是“最巧妙的解法”。

怎样渡河才好

暴风雨过去了,一支巡回医疗队来到河边,哪知木桥已被洪水冲断,怎么样办呢?正在焦急的时候,忽然看见一条小船向这边驶来。

“啊,太好啦!村里两个少先队员来接我们啦!”大家高兴极了。

可是,这条船实在太小,它只能承载两个孩子或者一个大人。

“怎样才能全部渡到对岸去呢?”大家都在沉思着。

聪明机智的少先队员,很快想出了渡河方案,巧妙地把大家全部渡到对岸,是怎样一个方案呢?

首先,两个少先队员把船划到对岸。

接着,他们之中一个留在对岸,另一个划回来。

这个少先队员上岸,一个医疗队员划过去。医疗队员上岸,留在对岸的少先队员划回来。

这时,一个医疗队员已到对岸,而两个少先队员却都回到这边来。整个过程这样重复下去,直到每一个医疗队员全都渡过河去为止。

这里渡河的程序是何等重要,先怎样,后怎样,再怎样,必须按一定的次序。

六人集会问题

问题很简单,任何六人的集会中,总有三个人彼此相识或三个人彼此不相识。但问题的解决不很简单。

我们把六个人看作是平面上的六个点A,B,C,D,E,F(为清晰起见,假定六点中无三点共线),相识的二者之间用实线连接,不相识的二者之间用虚线连接,于是问题便转化为,一定能连得一个实边三角形或一个虚边三角形。

我们以A为基点进行全面分析,A与其它点之间的连线共有六种情况,即五条实线;四实一虚;三实二虚;二实三虚;一实四虚;五条虚线。不难看出前三种情形的解决便导致了后三种情形的解决,B、C、D三点若全部用虚线连结则问题得证。先出现一条实线比如BD,则ABD为实边三角形,同样问题得证。

上面的问题做一个古老的数字游戏,我们是把它转化为“图论问题”来解决的,并得到了一个重要的“图论定理”:用实线或虚线连结六点中的各两点之后,则至少有一个实线作成的三角形或一个虚线作成的三角形。解决问题中所采用的形式转化和全面分析等,都是富有启发性的。

怎样计算222

怎样计算222呢?

是把它作为(22)2呢?还是把它作为2(22)呢?

不妨算算看。

(22)2=42=16,

2(22)=24=16。

两种计算结果是相同的。

是不是两种方法都可以呢?

且慢作结论。再换一个类似的题目试试。

计算计算233看。

如果是这样算:(23)3=83=512

如果是这样算:

2(33)=227=134217728

两种方法的答案相差很大。

哪一种对呢?是后面一种做法对。

因此,把222作为42=16的计算方法是错误的,虽然答案16是不错的。

我们可以知道,凡是指数里面是一个又有指数的幂时,应该先进行指数里面的运算,也不必另加括号。也就是说,遇到这种情况,计算时由上而下,先算出上面的指数。

根据这一原则,算算2222看。

怎样巧算圆木堆垛

在货栈或仓库里,物品的码放都是很有次序的,这样不仅整齐美观,取用方便,而且也易于统计。

有一堆长短粗细相同的圆木堆放在露天仓库里,按以下规律排列:最下边一层是10根,以后每一层比下一层少一根,最上边一层是1根,这堆圆木一共有多少根?

有的同学说,圆木堆垛的横截面是一个三角形,底层是10根,高是10层,列式为:10×10÷2=50(根),这堆圆木共50根。

也有同学说,圆木堆垛的横截面是一个梯形,下底层是10根,上底层是1根,高是10层,列式为:(10+1)×10÷2=55(根),这堆圆木共55根。

这两个答案哪个对呢?让我们来分析一下。

假如你在这堆圆木旁边,再并排地放上同样的一堆,只是上下倒置,每一层的根数,恰好是底层与顶层根数的和,底层是10根,顶层是1根,每一层的根数是10+1=11(根),一共是10层,11×10=110(根),这110根是两堆圆木的总根数,原来的这堆圆木的根数就是这两堆圆木总根数的一半,110÷2=55(根)。由此说明,认为“这堆圆木共50根”的答案是错误的。错误的根本原因在于,不应该把圆木堆垛的横截面看成为三角形,虽然它的上底很短,数值很小,是“1”,但它毕竟不是“0”,只有当梯形的上底逐渐缩短,数值成为“0”时,梯形就转化成三角形了。

一般的计算公式是:

(底层根数+顶层根数)×层数2

如果有一堆钢管堆放在地上,第一层是8根,底层是20根,每层仍是依次减少一根,要求这堆钢管总数是多少根?也可以用这个公式来计算:

(底层根数+顶层根数)×层数2=总根数

=(20+8)×132=182(根),这堆钢管总数是182根。

“巧算圆木堆垛”的方法还可以推广到其它圆柱形物体的计算上去,如铅笔厂计算铅笔的支数、水泥管厂计算水泥管数等。除此以外,你能不能用这种巧算的方法去计算:101+102+103……+198+199+200的和呢?把101看作顶层的数,200看作底层的数,100个数是层数,列式为:

(101+200)×1002=15050。其实,这道题还可以这样算:1505×100=15050,你猜猜,这又是怎么想的呢?

巧遇小数点

东方刚刚发白,自然数家族中的小3就起床跑步了。他呼吸着清新的、带有花香的空气,舒服极啦!

突然,小3被什么东西绊了一下,身子往前一倒,亏得双手着地,不然的话,连门牙也保不住了。

小3爬起来一看,是个黑乎乎圆溜溜的小东西。一气之下,小3抬腿给了小东西一脚。这个小东西向前滚了几下,突然大声嚷道:“你凭什么踢我?”这么一喊,把小3吓了一跳。

小3也不示弱,他说:“你把我绊了一个大跟头!”

小东西气呼呼地说:“我正在这儿专心练气功,你为什么从我头上跑过去,还踢人!”

小3自觉理亏,又看他挺小,忙道歉:“真对不起,把你碰伤了没有?请问,你是什么数?我怎么没见过你呀?”

小东西眨巴着两只大眼睛说:“数?我可不是什么数,我叫小数点。”说完顽皮地在原地跳了几下,头一歪问:“小数点,你知道吗?”

小3摇摇头说:“不知道。我是自然数家庭中的数3,因为我比较小,大家都叫我小3。咱们交个朋友吧!”

“交朋友?恐怕你不敢吧!”小数点把身子左右晃了晃。

“交朋友还有什么敢不敢的。你这个朋友我是交定了,你跟我回家去吧。”说完也不等小数点同意,拉着小数点就走。

自然数们看见小3带来个小黑家伙,觉得挺好玩,一下子都围拢了过来。小3介绍说:“大家认识一下吧,这是我的新朋友小数点。”

数0是自然数家族中的客人,他好奇地问:“喂!小数点,你会干什么呀?”

“我会变魔术。不信,我给你们表演一下,请0和1出来帮我表演。”小数点右手拉着0,左手拉着1,面对大家站好。突然,他大喊一声:“变!”一道白光闪过,0没了,1没了,小数点也没了。出现在大家面前的是比1矮了一大截的01。

由于自然数家族中没有小数,大家都不认识01,因而议论纷纷:“这是个什么家伙,长得这么矮小?”“说他是0又不是0,说他是1又不像1,长得真怪!”

01做了自我介绍:“我叫零点一。把1平均分成十份,其中的一份就是我。”他看大家还傻呆呆地看着他,知道没弄懂,就一挥手说:“你们跟我走吧。”

大家跟他走进果树林。果树林里有苹果树、梨树、石榴树、桃树……不少树上果实累累。

01跳起来,摘下一个大苹果。他又从口袋里拿出一把水果刀,唰唰几刀,把苹果切成了相等的10块,拿起其中一块苹果说:“这就是01个苹果,给你吃吧。”说完递给了小3。小3看了看这一小块苹果说:“这么一点儿,不够吃呀!”01说:“嫌小,还给我。”

他又把10块苹果合在一起,吹了一口气,说也奇怪,已经切开的苹果又变成一个完整的大苹果。01对大家说:“10个01个苹果相加仍然得1个苹果。”

同类推荐
  • 牛虻(语文新课标课外必读第十二辑)

    牛虻(语文新课标课外必读第十二辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 教你打手球·橄榄球(学生球类运动学习手册)

    教你打手球·橄榄球(学生球类运动学习手册)

    球类体育运动的起源很早,中国在2300年前,即春秋战国时代,就有了足球运动,当时的足球叫“蹴鞠,至汉代,蹴鞠运动发展到了鼎盛时期,有了专业足球队、竞赛规则,还设立了裁判员。汉代,我国的踢毽子运动也十分盛行,至清末,参加的人越来越多,人们不仅用踢毽子锻炼身体,而且还把它和书画、下棋、放风筝、养花鸟、唱二黄等相提并论,可见对其的宠爱程度。
  • 别笑,我是高考零分作文(第2季)

    别笑,我是高考零分作文(第2季)

    最雷人、最搞笑、最荒诞、最天才的零分作文,高考一族的减压零食,都市白领的幽默早餐!另附小学生爆笑“撒谎作文”必杀篇,绝对挑战你的想象极限!《央视新闻频道》等28家电视台,《新华日报》《南方日报》《重庆晨报》等120家报纸、数千家网站报道推荐!
  • 文学故事(语文新课标课外必读第九辑)

    文学故事(语文新课标课外必读第九辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 教你学自行车·摩托车(学生室内外运动学习手册)

    教你学自行车·摩托车(学生室内外运动学习手册)

    体育运动是以身体练习为基本手段,以增强人的体质,促进人的全面发展,丰富社会文化生活和促进精神文明为目的一种有意识、有组织的社会活动。室内外体育运动内容丰富,种类繁多,主要项目有田径、球类、游泳、武术、登山、滑冰、举重、摔跤、自行车、摩托车等数十个类别。
热门推荐
  • 冷情王爷嚣张妃

    冷情王爷嚣张妃

    【原创作者社团『未央』出品】那一场相遇,注定成为一个劫,逃不开宿命轮回,避不过生死纠缠,我舞尽妖娆,倾尽芳华,终,还是要与你擦肩......
  • 老婆领个证

    老婆领个证

    本文纯粹宠文。前任跟人跑了,日子还得过下去。对于江云稀来说,最想做的就是找个靠谱的男人将自己嫁了。相亲N次之后发现,靠谱的男人没遇到,所以她开始反省。不近女子的他觉得她真是笨得可以,决定学习雷锋精神,做回好人把她拐回家。【诱拐老婆】她问:“我们不是说好是假结婚吗?不用去领个真的结婚证吧?”他答:“我打电话问过办假证的了,他们说办个假证要五十元,我们领个真的,前结后离的也就十八元,省下的三十二元买苹果吃多好,干嘛要便宜那些办假证的人啊。”陆秦风说:此生最大的成就不是把公司开到了国外,而是娶到了一个笨笨的老婆!江云稀说:此生最大的失误就是误信了这个看似无害,实则腹黑闷骚的男人;此生最想做的事就是小白菜变成小白猫,然后时不时的伸出锋利的爪子给他几挠,让他知道她的厉害。PS:简介无能,正文才是王道,请看正文!
  • 万界战皇神

    万界战皇神

    “五尊降临”——“万魔沉浮”。“邪恶克星”——“唯我五尊”。这几句话代表着五位“万界战皇神”拥有的超乎想像的力量,也代表着五位“万界战皇神”注定要与邪恶的魔皇展开一场场神圣大决战!这五位“万界战皇神”就是:拥有超越一切无限力量的“至尊超神皇--傲天帝斯”,拥有无限毁灭力量的“至尊毁灭皇--龙奇”,拥有无限创造力量的“至尊创造皇--幻天异”,拥有无限光明力量的“至尊光明皇--圣辉”。
  • 绝色控物师

    绝色控物师

    【男色版简介】现代异能特种兵重生在了一个没有任何修炼根基却又长得倾国倾城的冷宫公主身上,命运又将发生怎样的变化。虽说是强者生存的国家,但是家族、皇族的牵绊却是连连不断。他是她最爱的人,却为了所谓国家利益,不惜让她成为随时都能殒命的奸细。原以为就算是短暂的分别,依旧可以拥有幸福的结局,却不想时过境迁,沧海桑田。他,是敌国之皇,虽然因为她是奸细有过怀疑,但是最后却甘心付出所有,愿换得她回眸一笑,只是也许计划永远没有变化快。他,是身处高界面的顶尖高手,本对这些蝼蚁不屑一顾,却未曾想过会因为一个人而改变,最后付出了自己最宝贵的真心。他,是神圣的象征,淡漠于世,早已封闭了七情六欲,却没想有生之年还能碰到这样一个女子,让他甘心付出一切,不求回报。他…他…他…当他们遇上了她,人生又会如何风云变幻?【女主版简介】现代异能特种兵重生在一个玄幻的大陆,又引起了什么争端,掀起了什么风浪?她执行任务的时候意外丧生,本以为寿终正寝,死得其所。但是也许是上天眷顾,却给了她一个重生的机会。来到这个大陆,人生地不熟,但是却难不倒在无数危机下存活的她。炼器,不会?炼药,不会?玄气,没有?灵兽,没有?总之她是个什么都没有的废物,却因为美色而被选中和亲,但是最后众人看到的又是什么呢?身娇体柔易推倒的她,又将在这个世界掀起怎样的风风雨雨?【精彩抢鲜看】“君昊,我不愿和亲,我们一起离开这里可好?”“颖儿,你必须去和亲,这是女皇的意思,也是月幻的意思。以你的聪慧,应该懂得其中的意味。”“呵呵,其中的意味?你们想要一个奸细,月幻却担心有人意图不轨,所以才会选中我这个废材么?”“颖儿,你在我心中是最好的。等你回来,我便嫁与你,你我一生一世可好?”“此去,我们还有一生一世么?”…相离不语,惟有泪千行,只是所有的泪水都流进了心里。…“与我携手,共赏这风云大陆,如何?”“我愿意。”她温顺的笑着,眼里不带一丝杂质,明净透亮。“哈哈哈,我的,颖儿。”明明是开怀大笑,可这心里的阵阵刺痛又是怎么回事呢?…明知后果,却义无反顾,这是飞蛾扑火。但你我不是飞蛾,岂知飞蛾是自取毁灭…“他配不上你。”他高傲的说道,眼底满是不屑。“你不是我,怎知他配不上我?”她淡淡说道,云淡风轻,温软细语。“就凭,只有我,才配得上你。”“呵呵。”她不可置否。
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 乱世猎人第三卷

    乱世猎人第三卷

    一位自幼与兽为伍的少年,凭其武功与智慧突起江湖,却被乱世的激流,一次次推向生死的边缘,而使他深明乱世的真谛——狩猎与被猎。凭其机缘运数,突破武学与智慧的极限,终成乱世之中真正的猎人,而使整个武林以至天下的局势运于掌中……
  • 全能魄尊

    全能魄尊

    踏上另类修炼之路!大杀四方,废弃支脉独子陆天游,抢夺秘笈,虐杀狂龙,降龙伏虎,却机缘获异界智能,名留龙腾大陆!陆天游在夺金丹,练筋骨,修神海!逆天修行!高调揍人,资质平庸受人讽刺,低调修炼。血落衣裳满,终成一方霸主纵横天下时自问:此是否魄力之尽头……
  • 纨绔丹神

    纨绔丹神

    升仙丹劫降临,当朱飞醒来的时候,却发现自己重生在了一位大家族的废柴私生子身上。面对他人的欺辱和挑衅,他,还会像以前那样胆小懦弱吗?面对自身的孱弱,他,又会作何改变?且看一个废物的逆袭,如何一步步以嚣张而霸道的姿态,最终走上巅峰!
  • 影响你一生的北大演讲(大全集)

    影响你一生的北大演讲(大全集)

    本书收录的这些演讲,风格迥异,各具特色,无论哪个年龄段的读者都能从中品读出净化心灵的语言、提升自己的知识储备,它们是拓展视野、获取经验的宝贵资源。
  • 如何提升执行力

    如何提升执行力

    所以,也是更重要的一面,能力是基础,即要端正工作态度。我们要提升个人执行力,执行力就是把想法变成行动,一方面是要通过加强学习和实践锻炼来增强自身素质,是事业成功的必要条件。,用行动得到结果的能力。个人执行力的强弱取决于两个要素——个人能力和工作态度,另一方面,态度是关键