登陆注册
3237100000007

第7章

消去z,可得7x+4y=100,因此y=100-7x4=25-7x4。由于y表示母鸡的只数,它一定是正整数,因此Χ必须得4的倍数。我们把它写成:x=4K(KN)。于是y=25-7K。代入原方程组,可得z=75+3K。把上面三个式子写在一起有:

x=4Ky=25-7Kz=75+3k

在一般情况下,当K取不同的数值时,可得到x、y、z的许许多多组不同的数值。但是对于上面这个具体问题,由于YN,故K只能取1、2、3三个数值,由此得到本题的三种答案。

百羊问题

百羊问题是出自中国古代算法《算法统宗》中的一道题。

这个问题说的是:“牧羊人赶着一群羊去寻找长得茂盛的地方放牧?

有一个过路人牵着一只肥羊从后面跟了上来。他对牧羊人说:“你赶来的这群羊大概有一百只吧?”牧羊人答道:“如果这一群羊加上一倍,再加上原来这群羊的一半,又加上原来安群羊的四分之一,连你牵着的这只肥羊也算进去,才刚好凑满一百只。”谁能知道牧羊人放牧的这群羊一共有几只?

根据题意,我们可设这群羊共有x只,则x+x+12x+14x+1=100,解这个方程得:X=36,也就是牧羊人放牧的这群羊共有36只。

“农妇卖蛋”

“农妇卖蛋”是一个经典问题。

这个问题说的是:一农妇去市场卖鸡蛋,第一次卖去全部鸡蛋的一半又半个;第二次又卖去剩下鸡蛋的一半又半个;第三次卖去前两次卖后所剩下鸡蛋的一半又半个,最后又卖去所剩下鸡蛋的一半又半这时鸡蛋恰好卖完,问农妇原有多少鸡蛋许多数学家爱好者对这个问题十分感兴趣,并给出了许多解答方法,但多数方法较为繁琐。瑞士着名的数学家欧拉对这个问题给出了一个别具一格的解法:设第三次卖完后所剩(第四次卖去)的鸡蛋为1+05,第三次卖去的鸡蛋为(1+05)×2=3,第二次卖完后所剩鸡蛋数应为:(3+05)×2=7(个),因此,农妇原有鸡蛋数为:(7+05)×2=15(个)

我们从欧拉对上述问题得到启发:有些数学问题,如果按正向思维去考虑问题,有时难以入手或根本无法获解,但若能根据问题提供的条件,进行逆向思维去考虑,则有获解的希望。欧拉解农妇卖蛋问题正是这种逆向思维方式的具体体现。

摆满棋盘的麦粒

在印度,有一个古老的传说:“当时舍罕王打算重赏国际象棋的发明人——宰相西萨·班·达依尔。宰相请舍罕王在棋盘的第一个小格内赏给他一粒麦子,在第二个格子内赏给他2粒麦子,第一个格赏给他22=4粒麦子……照此下去,每一格内的麦子都比前一小格的加一倍。舍罕王认为这样摆满棋盘上所有64格的麦粒也不过一小袋,就答应了宰相的要求。可是当宫廷数学家计算了这个数目之后,才发现整个国家仓库里的所有麦子全部给宰相还相差很多,甚至在全世界的土地上也不可能收获这么多的麦子。

这是怎么回事呢?这是一个等比数列(也称几何级数)求前64项和的问题。

根据等比数列求前几项和的公式:

Sn=a1(qn-1)q-1,(其中a1是等比数列an的第一项,q是公比,n为项数)而在该题中,a1=1,q=2,n=64,则:

S64=1×(264-1)2-1=264-1=18446744073709551615

这个数字是非常大的。可见,古印度在当时就有了几何级数的思想。

在中国两千多年前的《易经》、《九章算术》等着作中,都包含了等比数列的内容。

摸球的奥秘

在一些地方常有人经营这样的“游戏”,经营人手持一个布口袋。口袋里有20个同样大的玻璃球,其中10个蓝球,10个红球,由你任意摸10个,当你摸出的球两种颜色的比为:

10∶0赢300元

9∶1,赢100元

8∶2,赢30元

7∶3,赢2元

6∶4,输10元

5∶5,赢1元

初看,似乎摸球人很占便宜,可以赢5种比值,而经营者只赢1种,摸球的人赢的数额又分别为300元、100元、30元和1元。其实不然,摸球人一般会遇到失败。是否其中有诈?通过仔细观察,发现布袋里的玻璃球并无异样。经营者甚至会让摸球人自己拿着布袋子摸,结果往往又遭失败。

这里的奥秘在哪里呢?

我们知道,在自然和社会现象中,有这样一类事件,它在相同条件下由于偶然因素的影响可能发生,也可能不发生,这类事件叫随机事件。对一个随机事件做大量实验时发现,随机事件发生的次数与试验次数的比总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小。例如:做大量抛硬币的试验中,正面向上和反面向上的次数大致相等,各占总次数的12左右。12就是硬币正面向上(和反面向上)这一事件的概率。

在上述摸球的“游戏”中,摆摊人所列出的几种比所产生的概率是不同的,分别为:

10∶09∶18∶27∶36∶45∶5192378100923782025923781440092378441009237831752923780001%011%219%1559%477%347%

由上表可以看出,6∶4发生的可能性最大,10∶0出现的可能性最小。他把最小的让给摸球人,价格定得很高,自己挑了个概率最大的,定了中价,5∶5的概率排在第二位。为了避免摸球人总是失败,经营者把这个让给摸球人,但价格定的最低,对摸球人赢的几种情况,概率越小,定价越高。

如果按概率的数值计算,你摸92378次,则可以赢到,300×1+100×100+30×2025+2×14400+1×31752=131602(元),而应输掉44100×10=441000(元),结果摸球人将输掉441000-131602=309398(元)

显然,经营者在不捣鬼的正常情况下,可以赢到30多万元。

摸球“游戏”是一种赌博行为,但利用的是数学知识,可见数学知识无处不在。如果我们掌握了这些知识,就不会上当受骗了。

巧解九连环

外国文献中把九连环叫做“ChineseRing”,世界上一致公认它是人类所曾发明过的最奥妙的玩具之一。

九连环不知道是什么时候发明的,由于年代久远,缺乏史料,许多人都认为它大概来自民间。十六世纪的大数学家、在普及三次方程解法中作出了卓越贡献的卡尔达诺在公元1550年(相当于我国明朝中叶)已经提到了九连环。后来,大数学家华利斯对九连环也作了精辟的分析。在明清二朝,上至所谓“士大夫”,下至贩夫走卒,大家都很喜欢它。

九连环一般都用粗铅丝制成,现在从事此道的民间艺人已经寥若晨星,我们只好自己动手来做一个。它共有九个圆环,每一个环上都连着一个较细的铅线直杆,各杆都在后一环内穿过,插在白铁皮上的一排小孔里。杆的下端都弯一小圈,使它们只能在小孔里上下移动,但脱不出来。另外再用粗铅丝做一个双股的钗。

玩这种游戏的目的是要把九个环一个扣住一个地都套到钗上,或者从钗上把九个环都脱下来。不论是套上或脱下都不容易,要经过几百道手续,还得遵循一定的规律,用数学的行话来说,就是有一套“算法”。

先介绍两种基本动作。如果要把环套到钗上去,先要把环从下向上,通过钗心套在钗头上,这一个动作除了第一环随时可做外,其余的环因为有别的环扣住,都无法套上。但有一点要注意,如果前面有一个邻接的环已经套在钗上,而所有其他前面的环都不在钗上时,那么,只要把这一个在钗上的环暂时移到钗头前面,让出钗头,后一环就可以套上去,再把前一个恢复原位。

至于环从钗上脱下的基本动作,只要把上面的“上环”动作倒过来做就行了。

懂了这两种基本动作之后,我们还要多加练习,要做到不论套上或脱下都能运用自如。现在可以看出,如果只要套上第一环,只须一步手续就行了。要套上第一、二两环,可先上第一环,再上第二环,因此,一共需要二步。如果要上三个环呢。手续就更麻烦了。必须先上好第一和第二两个环,还得脱下第一环,才能套上第三环,最后再上第一环,这样,一共需要五步。(为了统一起见,每移动一个环算作一步。)当环数更多时,手续必然更繁,如果一旦弄错,就会乱了套。幸而我国古代的研究家们早就考虑到了,他们根据古算的特色,创造了三句口诀:“一二一三一二一,钗头双连下第二,独环在钗上后环。”(最后五步是一二一三一;脱环时最先五步是一三一二一。)

换句话说,移动的手续是,每八步可作为一个单元,其中的前七步一定是“一二一三一二一”,至于到底应“上”应“下”呢,这可依自然趋势而定。即:原来不在钗上的应“上”,原来在钗上的应“下”。至于第八步则要看那时钗头的情况而定:如果有两环相连时,一定要脱下后一环;如果钗头只有单独的一环时,一定要套上后一环。以上就是口诀的意思,“算法”的全部奥妙就都在这里了。根据这三句口诀,解开或套上九个环,虽然有341步之多,也不费吹灰之力了。据我国古代小说记载,民间老艺人把九连环全部解开来,大约只要五分钟左右。

1975年,在国外出版了一本专书,专门讲各式各样的数列。由于电子计算机的飞速发展,数学里有一种“离散化”倾向,因此,这本书的出版,被认为是前所未有的,得到了各方面的好评。在这本书里,也收罗着下面的数列:

1、2、5、10、21、42、85、170、341……

起先大家都莫名其妙,不知道它是干什么用的,因为它既非等差数列,又非等比数列,也不是一些有名的数列。但是,后来一经指点就恍然大悟了,原来它就是“九连环”数列。第一项的1,表明解开一个环只要一步,第二项的2,表明解开二个环需要二步……等等以此类推。由此可见,解开九个环,一共需要三百四十一步。

数列里头的各个数,到底有什么规律?是否非得死记不可?经过专家一研究、一分析,谜底终于揭穿了。原来,如果我们用un代表上述数列中的第n项,那么,就可以得出下面的公式:

当n是偶数时,un=2un-1。

(例如,解开八个环需要的步数170,正好是解开七个环需要的步数85的二倍。)

当n是奇数时,un=2un-1+1。

(例如,解开九个环需要的步数341,等于解开八个环需要的步数170的二倍再加上1。)

这样一来,我们有了u1,就能推出u2,有了u2,就能推出u3……正象顺藤摸瓜,这种方法就叫“递归”,是数学里一个非常重要的概念。

上面的方法虽然好,有人却仍旧感到美中不足。他们问,如果要解开几个环,到底需要几步?有没有一个直接的计算公式呢?用数学的行话来说,就是要求出一个用n来表示un的函数关系。经过前人的研究,这个式子也是有的,即:

un=13(2n+1-1)当n为奇数时;13(2n+1-2)当n为偶数时;

于是,九连环的问题就圆满解决了。

奇怪的遗嘱

古时候,人们曾将一些动物奉若神明。例如,古埃及人将猫尊为神圣的月亮和富裕女神,顶礼膜拜。谁家的猫死了,全家人都得剪掉头发,剃光眉毛,以示哀悼;而谁要是杀死了猫,即使是无意的,也会被处以极刑。

无独有偶,印度人也有类似的习俗。不过,他们顶礼膜拜的不是猫,而是牛,即使牛横冲直撞,践踏庄稼,人们也不敢干涉。至于有谁屠宰牛,则无异于犯下了弥天大罪。

由于这种奇特的习俗,印度人民中流传着一个非常有趣的故事。

相传在非常遥远的古代,一位老人害了重病,临终前,他将3个儿子全都叫到床前,立下了一份遗嘱。遗嘱里规定3个儿子能够分掉他的17头牛,但又规定:老大应得到总数的1/2,老二应得到总数1/3,而老三只能得到总数的1/9。

老人去世后,兄弟3人聚在一起商量如何分牛。起先,他们以为这是一件非常容易的事,可是,他们商量来,商量去,商量了老半天,也没有找出一种符合老人规定的分法。因为17的1/2是812,17的1/3是523,17的1/9是189,这3个数都不是整数!

而且,这种分法需要活活杀死2头牛,实际上是根本行不通的。

其实,即使是偷偷屠宰了2头牛也无济于事,因为812+523十189=16118并没有能将17头牛全部分完,还会余下1头牛的17/18。剩下的部分又该怎么办呢?这份遗嘱能够执行吗?

兄弟3人解决不了这个问题,去向许多有学问的人请教,大家聚在一起商量了老半天,也没有找出一种符合老人规定的分法。

一天,有个老农牵着1头牛从这家门口经过,听说了这件事,他想了一会儿,开口说道:“这件事其实很容易。这样吧,我把这头牛借给你们,你们按总数的1/2、1/3、1/9去分,分完后再把这头牛还给我就行了。”

兄弟3人决定按老农的分法去试一试。这时,他们手中共有18头牛,老大分1/2,得9头;老二分1/3,得6头;老三分1/9,得2头,真是巧极了,这么一来,他们刚好分掉了自己家的17头牛,而且还余下1头,正好原封不动地还给那位老农。

这个难住了那么多人的数学问题,就在这变魔术似的一借一还中,干脆利落地给解决了。

这是怎么回事呢?原来,那位聪明的老农弄清了遗嘱的秘密。老人规定3个儿子各得17头牛的1/2、1/3、和1/9,实际上,也就是要他们按这个比例去分配。把1/2∶1/3∶1/9化成整数比是9∶6∶2,而9+6+2又正好等于17,所以,按照9、6、2这3个数字去分配,就正好符合遗嘱规定的分法。

那么,老农为什么又要借给兄弟3人1头牛呢?瞧,12十13十19=1718,这个算式提醒人们,按照遗嘱的规定去分牛,实际上是在分配18份中的17份。老农借出1头牛后,总数达到了18头,而18头的1/2、1/3和1/9正好是整数,他的分法就比较容易为大家所接受。

很清楚,无论借牛与不借牛,结果都是一样。当然,老农借出1头牛后,他就用不着多费口舌去解释其中的道理了。

“盈不足术”

如果有人出这样一道题:4个人合买一件12元的礼物。问每人应出多少钱?你会毫不费力地回答:每人应出3元。从代数的角度来看,这只不过是解方程4x=12而已,非常简单。但令人惊奇的是,象px-q=0这种简单的一次方程问题,在古代却要大费周折,用相当麻烦的办法来解决。

在中世纪的欧洲,为了解px-q=0这种类型的问题,有时要用到所谓“双设法”,即通过两次假设以求未知数的方法。这种方法的大意是:设a1和a2是x值的两个猜测数,b1和b2是误差,这时有a1p-q=b1,(1)a2p-q=b2,(2)(1)-(2)得p(a1-a2)=b1-b2,p=b1-b2a1-a2。

(1)×a2-(2)×a1,得-q(a2-a1)=a2b1-a1b2,

即,q=a2b1-a1b2a1-a2。

因此,x=qp=a2b1-a1b2b1-b2,

同类推荐
  • 让身心与梦想齐飞(培养学生心灵成长的经典故事)

    让身心与梦想齐飞(培养学生心灵成长的经典故事)

    在这套丛书里,我们针对青少年的心理特点,专门选择了一些特殊的故事,分别对他们在这一时期将会遭遇的情感问题、生活问题、学习问题、交友问题以及各种心理健康问题,从心理学的角度进行剖析和讲解,并提出了解决问题的方法和措施,以供同学们参考借鉴。
  • 宋词(语文新课标课外必读第六辑)

    宋词(语文新课标课外必读第六辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 豪夫童话(语文新课标课外必读第九辑)

    豪夫童话(语文新课标课外必读第九辑)

    《豪夫童话》讲述了出一个又一个的小故事:《小穆克》揭露统治阶级的不仁不义和对普通百姓的欺压,具有很强的人民性。《年轻的英国人》写一只猴子扮成绅士在上流社会厮混,受到市长等人的赏识,最后使他们丢尽了脸面。这篇童话辛辣地嘲讽了市民阶层盲目崇拜外国风尚、追求时髦的坏风气。
  • 趣味问答(智商总动员)

    趣味问答(智商总动员)

    本套丛书涉及到少年儿童必须知道的许多知识领域,具有很强的系统性、实用性和现代性,是一套小小的百科全书,非常适合少年儿童阅读和收藏。
  • 必知的中国战争(青少年军事爱好培养)

    必知的中国战争(青少年军事爱好培养)

    军事是一个国家和民族强大和稳定的象征,在国家生活中具有举足轻重的作用。国家兴亡,匹夫有责,全面而系统地掌握军事知识,是我们每一个人光荣的责任和义务,也是我们进行国防教育的主要内容。
热门推荐
  • 动物世界3

    动物世界3

    大千世界,精彩纷呈。面对五彩缤纷的动物世界,孩子们睁大了惊奇的双眼。鸟儿为什么会飞?大象的鼻子为什么那么厉害?鱼怎么会放电?数亿年前,动植物的出现叩响了沉默。也许,它们有的只是一个细胞,渺小得似乎可以忽视,但它们却宣告了一个不平凡的开始——地球上从此有了生命。经过几亿年的进化繁衍,地球上变得日益充盈。从浩瀚的海洋到广阔的天空,从葱翠的平原到荒芜的沙漠,从赤日炎炎的非洲内陆到冰雪覆盖的南极大陆……到处都有动物的踪迹。它们或披着鳞带着甲,或裹着厚厚的皮毛,共同演绎着这个世界的五光十色和盎然生机。
  • 【完结】妃亲不可:皇帝认栽了

    【完结】妃亲不可:皇帝认栽了

    新坑推荐:《江山为聘:杠上腹黑王爷》(本文的姐妹篇哦,记得收藏+推荐)http://m.pgsk.com/a/311868/_下水道也能玩儿穿越?!睁开眼,七岁的身体二十岁的心,还是女扮男装!面对被欺负的瞎眼母亲,她小鸡护母鸡,勇斗恶大娘,可惜还未分出胜负就被扔到敌国去了。十三岁,好不容易回到南蜀,瞎眼母亲早已含恨而终,她发誓为母报仇。十九岁,喜欢的男人娶了皇后又有了妃,她该功成身退了吧?可惜又被发现女儿身,现在是跑也跑不掉了!◇◆◇◆他是天命所归的帝王,也注定要历经百般磨难。出生时晚了那么一个时辰,大皇子之位与他擦身而过。七岁时母妃以巫蛊之祸为名被陷害,从此打入冷宫。九岁时更被送去敌国做质子,受尽百般屈辱。十五岁好不容易回国,又是孤身难战满朝文武。患难见真情,无论处境多么困难,他的身边始终跟着一个他。二十一岁登上帝位,娇妻美娘常作伴,而他最大的功臣却要离开。他不许!偶然发现,他逃得如此之快竟然只因他是女儿身!欺君之罪尚不得恕,更何况还骗了他十三年,那就罚你终身侍奉朕!◇◆◇◆片段一:七岁的他抡直了手臂,用力地给面前九岁的他一巴掌,然后满脸不屑地说道:“没出息!”九岁的他用力握紧拳头,然后狠狠地还了一拳,最后厉声一喝:“我是未来的皇帝!”“有出息,冲你这句话,我跟你混啦!”一手捂着发疼的肚子,七岁的他一边乐颠颠地跟了上去。片段二:“现在,你已经实现你的抱负了,我也该走了!”鳞光铠甲闪烁着耀眼的光。“你要去投奔他?”他用力握紧手中的酒杯,装作漫不经心的说道。“不是!”“那你帮我攻下西御,我就放你走!”他仰头饮尽杯中酒。“好!”【PS】推荐朋友写的好看仙侠文:邪魅师叔:娘子,别跑!http://m.pgsk.com/a/318523/好看宝宝文:糯米宝宝:Q上总裁爹地http://m.pgsk.com/a/321505/#@#【云锦的QQ群:146070080,欢迎各位亲的加入。】
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 复方穿心莲

    复方穿心莲

    吴君,女,中国作协会员。曾获首届中国小说双年奖、广东新人新作奖。长篇小说《我们不是一个人类》被媒体评为2004年最值得记忆五部长篇之一。出版多本中篇小说集。根据其中篇小说《亲爱的深圳》改编的电影已在国内及北美地区发行放映。
  • 重生之玉枝

    重生之玉枝

    陈骋,女,具有过目不忘和预测危险的能力。出生时有严重的心脏病,11岁因病离世。死后重生在几千公里之外的深山中一位叫玉枝的同龄女孩儿身上。而且,她必须在山中至少生活六年。六年后,陈骋回到家乡,迎接她的又会是怎样的纠葛?
  • 古龙文集:名剑风流(上)

    古龙文集:名剑风流(上)

    江湖名门“先天无极派”掌门人俞放鹤于家中遭人毒手,其子俞佩玉亲眼目睹父亲惨死却无力相助;后遇未婚妻林黛羽才得知父亲的好友也一一被人杀害。而最让人难以置信的是就在同一天晚上,这些人却又奇迹般的“起死回生”。是有人恶意的玩笑,还是这“复生”背后隐藏了不为人知的阴谋?
  • 资治通鉴一日一读

    资治通鉴一日一读

    《资治通鉴》向来被视为辅佐统治、提供政治智慧的“帝王之学”,是中国自宋代以来历代皇帝的必学科目,也是今日为官从政者案头必备的历史参考书。“鉴于往事,有资于治道。”参照这面历史的镜子,可以练就看破成败的眼光,养成敏锐的世情嗅觉,让我们跳出人性的盲点,不再跌入历史的覆辙。历史是最不该被忽视的智力资源。关于今人面临的竞争、成败、取舍、抉择等生存问题,过去的时空中早就有过相关的案例:终南捷径、东山再起、狡兔三窟、择木而栖……破解尔虞我诈的政治权谋,领略对抗性的精英思维,悠悠青史,无疑是国人最可宝贵的阅历。
  • 帝霸

    帝霸

    千万年前,李七夜栽下一株翠竹。八百万年前,李七夜养了一条鲤鱼。五百万年前,李七夜收养一个小女孩。今天,李七夜一觉醒来,翠竹修练成神灵,鲤鱼化作金龙,小女孩成为九界女帝。这是一个养成的故事,一个不死的人族小子养成了妖神、养成了仙兽、养成了女帝的故事。
  • 皇家幼儿园

    皇家幼儿园

    各位朝中的大叔大哥们,把你家的儿子女儿都交给本公主教育吧!保证师资力量雄厚,宰相大人教历史,状元郎教诗书,还有将军大人负责兵法,连女孩子的女工都是太后亲自教导。哪里去找这么厉害的幼儿园?快来速速报名!
  • 无敌大小姐

    无敌大小姐

    当现代阴狠毒辣,手段极多的火家大小姐火无情,穿越到一个好色如命,花痴草包大小姐身上,会发生怎样的化学反应?火无情一醒过来就发现,自己竟然在众目睽睽之下上演脱衣秀。周围还有一群围观者。这一发现,让她极为不爽。刚刚穿好衣服,便看到一个声称是自家老头的老不死气势汹汹的跑来问罪。刚上来,就要打她。这还得了?她火无情从生自死,都是王者。敢动她的人,都在和阎王喝茶。于是,她一怒之下,打了老爹。众人皆道:火家小姐阴狠毒辣,竟然连老爹都不放在眼里。就这样,她的罪名又多了一条。蛇蝎美人。穿越后,火无情的麻烦不断。第一天,打了爹。第二天,毁了姐姐的容。第三天,骂了二娘。第四天,当众轻薄了天下第一公子。第五天,火家贴出招亲启事:但凡愿意娶火家大小姐者,皆可去火府报名。来者不限。不怕死,不想活的,欢迎前来。警示:但凡来此,生死皆与火家无关。若有残病者火家一律不负法律责任。本以为无人敢到,岂料是桃花朵朵。美男个个很妖娆一号美人:火无炎。火家大少爷。为人不清楚,手段不清楚。容貌不清楚。唯一清楚的是,他有钱。有多多的钱。火无情语录:钱是好东西。娶了。(此美男,由美瞳掩饰不了你眼神的空洞领养。)火老爷一气之下,昏了过去。家门不幸,家门不幸啊。二号美人:竹清月。江湖人称天上神仙,地上无月。大国师一枚。美得惊天动地。火无情语录:美人好,尤其是自带嫁妆又会预测未来的美人,娶了。(此美男,由东de琳琳领养)三号美人:轩辕子玉。当朝七皇子,游历四国。一张可爱无敌的脸。单纯至极。火无情语录:可爱的孩子好,可爱又乖巧的孩子更好。可爱乖巧又不用给钱的孩子,娶了。(此美男,由刘千绮领养)皇帝听闻,两眼一抹黑。他的儿啊。怎么就这么不争气呢。四号美人:天下第一美男。性格不详,籍贯不详。火无情语录:谜一样的美人,她喜欢。每天都有新鲜感。娶了。(此美男,由告别的爱情li领养。)五号美人:天下第一名伶。火无情语录:解风情的美男,如果没钱花把他卖了都不用调教。娶了。(此美男由伊眸领养。)六号美男:解忧楼楼主。相貌不详,身世不详。爱好杀人。火无情语录:凶恶的美人,她喜欢。娶了。(此美男由陈铭铭领养)七号美男:琴圣。貌如谪仙,琴音杀人。冷清眸子中,百转千回,说尽风流。(此美男由伊眸领养)夜杀:天下第一杀手。(此美男由静寂之夜领养)