登陆注册
3237100000003

第3章

此法的缺点是:先将代表复合数的齿全掰掉了。因为素数的存在是微弱地依附着较小素数及其倍数的复合数,而这点儿微弱的痕迹也给掰掉了。而这个问题,又不能从概率的办法解决,因为素数不是正态分析,而是一个确定的问题。所以他们就将x确定为一定值,再每两个齿一错位。这样,一个用有限问题企图解决无限问题,当然是极其困难的。尽管如此,仍有一些人在艰苦地攀登。所以后来,他们把大于某一个很大的数(例如k0=e49c)偶数,叫做大偶数,再将任一大偶数N(N>K0)写成自然数N1与N2之和,即N=N1+N2。而N1与N2里素因数这个数,分别不多于s与t个。故简记为(s,t),或写成带引号的加法:“s+t”,此时N1与N2可以叫做殆(接近)素数,然后将s与t值逐步缩小。如果一旦将s,t均计算到1,那时再来证明5×108Ne49 c时,(1,1)成立。这样,(1,1)问题即解决了。但是,至今没有最后解决。现将当前世界取得的名次结果,列表如下:

(s,t)年代结果获得者国别

(9,9)1920布龙挪威

(7,7)1924雷特马赫德

(6,6)1932埃司特曼英

(5,7),(4,9)1937蕾西意

(3,15),(2,366)1937蕾西

(5,5)1938布赫夕太勒前苏联

(4,4)1940布赫夕太勒

(1,C很大)1948瑞尼匈

(3,4)1956王元中

(3,3),(2,3)1957王元

(1,5)1962潘承洞中

巴尔巴恩前苏联

(1,4)1962王元

(1,4)1963潘承洞

巴尔巴恩

(1,3)1963布赫夕太勒

(小)维诺格拉朵夫前苏联

波皮里意

(1,2)1973陈景润中

按照华林原来的猜测,g(2)=4,g(3)=9,g(4)=19。一般地猜测:

g(k)=2k+〔(x)k〕-2(1)

其中〔x〕表示x的整数部分。

经过许多数学家的努力,除去k=4外,(1)已被证明,其中g(5)=37是我国科学家陈景润于1964年证明的。

对于k=4,目前已经证明:

19g(4)21,

并且在n10310或n>101409时,n可以表示为19个4次方的和。这已经接近于预期的目标g(4)=19了。

人们还发现,当自然数充分大时,可以将它表为G(k)个K次幂的和,这里G(k)g(k)。实际上,G(k)比g(k)小得多(当k大的时候)。目前仅仅知道G(2)=4,G(4)=19。对G(k)进行估计是一个很艰难的问题。

回数猜想

一提到李白,人们都知道这是我国唐代的大诗人,如果把“李白”两个字颠倒一下,变成“白李”,这也可以是一个人的名字,此人姓白名李。像这样正着念、反着念都有意义的语言叫做回文,比如“狗咬狼”、“天和地”、“玲玲爱毛毛”,一般说来,回文是以字为单位的,也可以以词为单位写回文,回文与数学里的对称非常相似。

如果一个数,从左右两个方向来读都一样,就叫它为回文数,比如101,32123,9999等都是回文数。

数学里有个有名的“回数猜想”,至今没有解决,取一个任意的十进制数,把它倒过来,并将这两个数相加,然后把这个和数再倒过来,与原来的和数相加,重复这个过程直到获得一个回文数为止。

例如68,只要按上面介绍的方法,三步就可以得回文数1111。

68+86154+451605+5061111

“回数猜想”是说:不论开始时采用什么数,在经过有限步骤之后,一定可以得到一个回文数。

还没有人能确定这个猜想是对的还是错的,196这个三位数可能成为说明“回数猜想”不成立的反例,因为用电子计算机对这个数进行了几十万步计算,仍没有获得回文数,但是也没有人能证明这个数永远产生不了回文数。

数学家对同时是质数的回文数进行了研究,数学家相信回文质数有无穷多个,但是还没有人能证明这种想法是对的。

数学家还猜想有无穷个回文质数时,比如30103和30203,它们的特点是,中间的数字是连续的,而其他数字都是相等的。除11外必须有奇数个数字,因为每个有偶数个数字的回文数,必然是11的倍数,所以它不是质数,比如125521是一个有6位数字的回文数,按着判断能被11整除的方法:它的所有偶数位数字之和与所有奇数位数字之和的差是11的倍数,那么这个数就能被11整除,125521的偶数位数字是1,5,2;而奇数位数字是2,5,1,它们和的差是(1+5+2)-(2+5+1)=0,是11的倍数,所以125521可以被11整除,且125521÷11=11411。

因而125521不是质数。

在回文数中平方数是非常多的,比如,

121=112,

12321=1112,

1234321=11112,

……

12345678987654321=1111111112,

你随意找一些回文数,平方数所占的比例比较大。

立方数也有类似情况,比如,1331=113,1367631=1113

这么有趣的回文数,至今还存在着许多不解之谜。

冰雹猜想

30多年前,日本数学家角谷静发现了一个奇怪的现象:一个自然数,如果它是偶数,那么用2除它;如果商是奇数,将它乘以3之后再加上1,这样反复运算,最终必然得1。

比如,取自然数N=6,按角谷静的作法有:6÷2=3,3×3+1=10,10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,从6开始经历了3→10→5→16→8→4→2→1,最后得1。

找个大数试试,取N=16384。

16384÷2=8192,8192÷2=4096,4096÷2=2048,2048÷2=1024,1024÷2=512,512÷2=256,256÷2=128,128÷2=64,64÷2=32,32÷2=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,这个数连续用2除了14次,最后还是得1。

这个有趣的现象引起了许多数学爱好者的兴趣,一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题,数学系和计算机系的大学生,差不多人人都在研究它。”人们在大量演算中发现,算出来的数字忽大忽小,有的过程很长,比如27算到1要经过112步,有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷成冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉下来,变成了1!选数学家把角谷静这一发现,称为“角谷猜想”或“冰雹猜想”。

这一串串数难道一点规律也没有吗?观察前面作过的两串数:

6→3→10→5→16→8→4→2→1;

16384→8192→4096→2048→1024→512→256→128→64→32→16→8→3→2→1。

最后的三个数都是4→2→1。

为了验证这个事实,从1开始算一下:

3×1+1=4,4÷2=2,2÷2=1。结果是1→4→2→1,转了一个小循环又回到了1,这个事实具有普遍性,不论从什么样自然数开始,经过了漫长的历程,最终必然掉进4→2→1这个循环中去,日本东京大学的米田信夫对从1到10995亿1162万7776之间的所有自然数逐一做了检验,发现它们无一例外,最后都落入了4→2→1循环之中!

计算再多的数,也代替不了数学证明。“角谷猜想”目前仍是一个没有解决的悬案。

其实,能够产生这种循环的并不止“角谷猜想”,下面再介绍一个:

随便找一个四位数,将它的每一位数字都平方,然后相加得到一个答数;将答数的每一位数字再都平方,相加……一直这样算下去,就会产生循环现象。

现在以1998为例:

12+92+92+82=1+81+81+64=227,

22+22+72=4+4+49=57,

52+72=25+49=74,

72+42=49+16=65,

62+52=36+25=61,

62+12=36+1=37,

32+72=9+49=58,

52+82=25+64=89。

下面再经过八步,就又出现89,从而产生了循环:

千古之谜

现代数论的创始人、法国大数学家费尔马(1601-1665),对不定方程极感兴趣,他在丢番图的《算术》这本书上写了不少注记。在第二卷问题8“给出一个平方数,把它表示为两个平方数的和”的那一页的空白处,他写道:“另一方面,一个立方不可能写成两个立方的和,一个四方不可能写成两个四方的和。一般地,每个大于2的幂不可能写成两个同次幂的和。”

换句话说,在n>2时,

xn+yn=zn(1)

没有正整数。这就是举世闻名的费尔马大定理。

“关于这个命题”,费尔马说:“我有一个奇妙的证明,但这里的空白太小了,写不下。”

人们始终未能找到弗尔马的“证明”。很多数学家攻克这座城堡,至今未能攻克。所以,费尔马大定理实际上是费尔马大猜测。人们在费尔马的书信与手稿中,只找到了关于方程

x4+y4=z4(2)

无正整数解的证明,恐怕他真正证明的“大定理”也就是这n=4的特殊情况。

既然(2)无正整数解,那么方程

x4k+y4k=z4k(3)

无解(如果(3)有解,即有正整数x0,y0,z0使

x04k+y04k=z04k(3)

那么(x0k)4+(y0k)4=(z0k)4

这与(2)无解矛盾!

同理,我们只要证明对于奇素数P,不定方程

xp+yp=zp(4)

无正整数解,那么费尔马大定理成立(因为每个整数n>2,或者被4整除,或者有一个奇素数p是它的因数)。

(4)的证明十分困难。在费尔马逝世以后90多年,欧拉迈出了第一步。他在1753年8月4日给哥德巴赫的信中宣称他证明了在p=3时,(4)无解。但他发现对p=3的证明与对n=4的证时截然不同。他认为一般的证明(即证明(4)对所有的素数p无正整数解)是十分遥远的。

一位化名勒布朗的女数学家索菲·吉尔曼(1776-1831)为解费尔马大定理迈出了第二步。她的定理是:

“如果不定方程x5+y5=z5有解,那么5|xyz。”

人们习惯把方程(4)的讨论分成两种情况。即:如果方程xp+yp=zp无满足p|xyz的解,就说对于p,第一种情况的费尔马大定理成立。

如果方程xp+yp=zp无满足p|xyz的解,就说对于p,第二种情况的费尔马大定理成立。

因此,吉尔曼证明了p=5,第一种情况的费尔马大定理成立。她还证明了:如果p与2p+1都是奇素数,那么第一种情况的费尔马大定理成立。她还进一步证明了对于100的奇素数p,第一种情况的费尔马大定理成立。

在欧拉解决p=3以后的90余年里,尽管许多数学家企图证明费尔马大定理,但成绩甚微。除吉尔曼的结果外,只解决了p=5与p=7的情况。

攻克p=5的荣誉由两位数学家分享,一位是刚满20岁、初出茅庐的狄利克雷,另一位是年逾70已享盛名的勒仕德。他们分别在1825年9月和11月完成了这个证明。

p=7是法国数学家拉梅在1839年证明的。

这样对每个奇素数p逐一进行处理,难度越来越大,而且不能对所有的p解决费尔马大定理。有没有一种方法可以对所有的p或者至少对一批p,证明费尔马大定理成立呢?德国数学家库麦尔创立了一种新方法,用新的深刻的观点来看费尔马大定理,给一般情况的解决带来了希望。

库麦尔利用理想理论,证明了对于p100费尔马大定理成立。巴黎科学院为了表彰他的功绩,在1857年给他奖金3000法郎。

库麦尔发现伯努列数与费尔马大定理有重要联系,他引进了正规素数的概念:如果素数p不整除B2,B4……Bp-3的分母,p就称为正规素数,如果p整除B2,B4……Bp-3中某一个的分母就称为非正规素数。例如5是正规数,因为B2的分母是6而5×6。7也是正规素数,因为B2的分母是6,B4的分母是30,而7×6,7×30。

1850年,库麦尔证明了费尔马大定理对正规素数成立,这一下子证明了对一大批素数p,费尔马大定理成立。他发现在100以内只有37、59、67是非正规素数,在对这三个数进行特别处理后,他证明了对于p100,费尔马大定理成立。

正规素数到底有多少?库麦尔猜测有无限个,但这一猜测一直未能证明。有趣的是,1953年,卡利茨证明了非正规素数的个数是无限的。

近年来,对费尔马大定理的研究取得了重大进展。1983年,西德的伐尔廷斯证明了“代数数域K上的(非退化的)曲线F(x,y)=0,在出格g>1时,至多有有限多个K点。”

作为它的特殊情况,有理数域Q上的曲线xn+yn-1=0(5)在亏格g>1时,至多有有限多个有理点。

这里亏格g是一个几何量,对于曲线(5),g可用g=(n-1)(n-2)2来计算,由(6)可知在n>3时,(5)的亏格大于1,因而至多有有限多个有理点(x,y)满足(5)。

方程

xn+yn=2n

可以化成

x2n+y4n-1=0

改记x2,y2为(x,y),则(7)就变成(5)。因此由(5)只有有限多个有理数解x、y,立即得出(1)只有有限多个正整数解x、y、z,但这里把x、y、z与kx、ky、kz(k为正整数)算作同一组解。

因此,即使费尔马大定理对某个n不成立,方程(7)有正整数解,但解也至多有有限组。

1984年,艾德勒曼与希思布朗证明了第一种情况的费尔马大定理对无限多个p成立。他们的工作利用了福夫雷的一个重要结果:有无穷多个对素数p与q,满足q|p-1及q>p2/3个。而福夫雷的结果又建立在对克路斯特曼的一个新的估计上,后者引起了不少数论问题的突破。

现在还不能肯定费尔马大定理一定正确,尽管经过几个世纪的努力。瓦格斯塔夫在1977年证明了对于p125000,大定理成立。最近,罗寒进一步证明了对于p4100万,大定理成立。但是,费尔马大定理仍然是个猜测。如果谁能举出一个反例,大定理就被推翻了。不过反例是很难举的。

五家共井

我国最早提出不定方程问题,它由“五家共井”引起。古代,没有自来水,几家合用一个水井是常见的事。《九章算术》一书第8章第13题就是“五家共井”问题:

今有五家共井,甲二绠不足,如乙一绠;乙三绠不足,如丙一绠;丙四绠不足,如丁一绠;丁五绠不足,如戊一绠;戊六绠不足,如甲一绠。如各得所不足一绠,皆逮。问井深、绠长各几何!

用水桶到井中取水,当然少不了绳索,“绠”就是指“绳索”。原题的意思是:

五家共用一水井。井深比2条甲家绳长还多1条乙家绳长;比3条乙家绳长还多1条丙家绳长;比4条丙家绳长还多1条丁家绳长;比5条丁家绳长还多1条戊家绳长;比6条戊家绳长还多1条甲家绳长。如果各家都增加所差的另一条取水绳索,刚刚好取水。试问井深、取水绳长各多少?

虽然该问题是虚构的,它是最早的一个不定方程问题。

用现代符号,可设甲、乙、丙、丁、戊各家绳索长分别为x、y、z、u、v;井深为h。根据题意,可得2x+y=h,3y+z=h,4z+u=h,5u+v=h,6v+x=h。

这是一个含有6个未知数、5个方程的方程组。未知数的个数多于方程个数的方程(或方程组)叫不定方程。用加减消元法可得x=265721h,y=191721h,z=148721h,u=129721h,v=76721h。

给定h不同的数值,就可得到x、y、z、u、v的各个不同的数值。只要再给定一些特定条件,就可得到确定的组解。原书中只给出一组解,是最小正整数解。

我国古代数学家在《九章算术》的基础上,对不定方程作出了辉煌的成绩。“五家共井”问题是后来百鸡术及大衍求一术的先声。

“五家共井”问题,曾引起世界上很多数学家的注视。在西方数学史书中,把最早研究不定方程的功绩归于希腊丢番都。其实,他在公元250年左右才研究这些问题,要比我国迟200多年。

公元6世纪上半期,张丘建在他的《张丘建算经》中有一个百鸡问题:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏生,值钱一。凡百钱,买鸡百只。问鸡翁、母、雏各几何?

意思是,如果1只公鸡值5个钱;1只母鸡值3个钱;3只小鸡值1个钱。现用100个钱,买了100只鸡。问公鸡、母鸡、小鸡各多少?

设公鸡、母鸡、小鸡分别为x、y、z只,则可得不定方程消去z不难得出5x+3y+13z=100x+y+z=100消去z不难得出y=7x4因为y是正整数,所以x必须是4的倍数。

设x=4t,则y=25-7t,z=75+3t

x>0,4t>0,t>0;

又y>0,25-7t>0,t347

故t=1,2,3。

原方程组有三组答案:

{x=4,y=18,z=78 {x=8,y=11,z=81 {x=12,y=4,z=84

数学史家评论说,一道应用题有多组答案,是数学史上从未见到过的,百鸡问题开了先例。《张丘建算经》中没有给出解法,只说:“术曰:鸡翁每增四,鸡母每减七,鸡雏每益三,即得。”意思是:如果少买7只母鸡,就可多买4只公鸡和3只小鸡。因为7只母鸡值钱21,4只公鸡值钱20,两者相差3只小鸡的价格。只要得出一组答案,就可推出其余两组。但这解法怎么来的?书中没有说明。因此,所谓“百鸡术”即百鸡问题的解法就引起人们的极大兴趣。

稍后,甄鸾在《数术记遗》一书中又提出了两个“百鸡问题”,题目意思与原百鸡问题相同,仅数字有所区别。到了宋代,着名数学家杨辉在他的《续古摘奇算法》一书中,也引用了类似的问题:

“钱一百买温柑、绿桔、扁桔共一百枚。只云温柑一枚七文,绿桔一枚三文,扁桔三枚一文。问各买几何?”

到了明清时代,还有人提出了多于三元的“百鸡问题”。不过,各书均与《张丘建算经》一样,没有给出问题的一般解法。

7世纪时,有人对百鸡问题提出另一种解法,但只是数字的凑合。到了清代焦循在他的《加减乘除释》一书中指出其错误。之后,不断有人提出新的解法,但都没有完全得到普遍解决此类题目的通用方法。例如丁取忠在他的《数学拾遗》中给出一个比较简易的解法:先设没有公鸡,用100个钱买母鸡和小鸡共100只,得母鸡25只、小鸡75只。现在少买7只母鸡,多买4只公鸡和3只小鸡,便得第一组答案。同理可推出其余两组。直到19世纪,人们才把这类问题同“大衍求一术”结合起来研究。

百鸡问题是一个历史名题,在世界上有很大影响。国外常见类似的题目。

速度趣题

1.自行车和苍蝇

同类推荐
  • 隐身新娘(语文新课标课外必读第十一辑)

    隐身新娘(语文新课标课外必读第十一辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 爱国爱民(上)

    爱国爱民(上)

    本丛书筛选内容主要遵循以下原则要求:(1)坚持批判继承思想,取其精华、去其糟粕。既不全盘肯定,也不全盘否定。坚持抽象继承、演绎发展、立足当代、为我所用。(2)坚持系统整体的原则。注意各历史时期分布;注意各民族的进步人物;注意各层面人物;注意人物各侧面。做到:竖看历史五千年,纵向成条线;横看美德重实践,横向不漏面。(3)坚持古为今用,为我所用原则。在发掘美德资源时,特别挖掘古代人物故事、言论,注重寻找挖掘各阶层、各民族的传统公德、通德、同德;注重人民性、民主性、进步性、发展性、普遍性、抽象性,不求全古代,不求全个体。
  • 教你学马术·轮滑(学生室内外运动学习手册)

    教你学马术·轮滑(学生室内外运动学习手册)

    体育运动是以身体练习为基本手段,以增强人的体质,促进人的全面发展,丰富社会文化生活和促进精神文明为目的一种有意识、有组织的社会活动。室内外体育运动内容丰富,种类繁多,主要项目有田径、球类、游泳、武术、登山、滑冰、举重、摔跤、自行车、摩托车等数十个类别。
  • 编织人际交往纽带(培养学生心灵成长的经典故事)

    编织人际交往纽带(培养学生心灵成长的经典故事)

    在这套丛书里,我们针对青少年的心理特点,专门选择了一些特殊的故事,分别对他们在这一时期将会遭遇的情感问题、生活问题、学习问题、交友问题以及各种心理健康问题,从心理学的角度进行剖析和讲解,并提出了解决问题的方法和措施,以供同学们参考借鉴。
  • 自巴黎一路南下

    自巴黎一路南下

    一段纸上的环球旅行,世界多国留学生携手旅外青春作家带你体验别样的留学生活和异国游历奇遇。在法国:难忘法国童话般的小镇,邂逅小镇里那个男子;在美国:开车穿越传说中的66号公路,遭遇惊悚的hitchhiker;在日本:一品浪漫的京都小雪;在德国:柏林墙头,一段穿越时光的生死恋;在俄罗斯:体会一个人在异国的独立生活;在印度:亚穆纳河波澜不惊的缓缓流过,有穿着红袍的印度女人,颈子里带着金色的项圈,咖啡色的皮肤美丽的暴露在阳光里,映着亚穆纳河波光粼粼的流水,闪耀的眸子带着夺人的亮光……
热门推荐
  • 锋芒毕露:草包三公主

    锋芒毕露:草包三公主

    【沂羽谷出品】(女主从弱变强,不喜绕路。本文纯属虚构。)伽玛帝国,草包三公主不堪受辱而自杀,清醒过来时,体内的灵魂已悄然易主。在敌军当前的时候,她击毙乱臣,选择带着公主的荣耀跃下城楼,就这样一跃,却注定了她日后的锋芒毕露。
  • 梦里

    梦里

    梦里的他,她,它还是他们原来都只是我的假想?我会不会有那么一天迷失在这不真实的世界里再也回不去了。那么我也该明白:我,是不应该对着一切有所动情的。我,只是一个旁观者才对。
  • 十卡

    十卡

    爆红的游戏,莫名死亡的玩家。你知道什么是人心吗?那么鬼怪呢?追求刺激而进入游戏的人们,感受到游戏越来越不对劲……2370年,凭空出现的游戏……
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 妾上无妻

    妾上无妻

    她是翼王府嫡郡主,却遭心仪之人背叛,害得翼王府除她之外满门抄斩。从此她性情大变,和亲远嫁,却在中道被劫,从而命运再度转折。他是龙乾太子,与她青梅竹马,却在共许终身时背叛她,待幡然悔悟,佳人已远。他是邻国的年轻王爷,闲散不得宠,表面性情温和胆小,实则却是腹黑无情。自救她后,他无趣的生活开始变化,本是将她当猫养,不料她骨子里是头狼。试看聪明强势的女主如何在一群腹黑男子中纠缠,试看在情与冷的交织中,女主如何一步步的登高至顶,傲然天下。
  • 民族灵魂的重铸

    民族灵魂的重铸

    本文不同意用西方现代“无主潮”的多元化状态来简单类比当代中国文学特定的多元化现象,同时认为,人道主义作为普泛的哲学思潮由于缺乏“中介”及其它原因不宜视为文学主潮;现实主义不论在方法的狭义上或者精神的广义上,也不宜涵盖日益复杂的文学现象。本文从文学的“人学”根本特性出发,把新时期文学主潮概括为:对民族灵魂的发现与重铸。。认为这是中国历史、中国社会、中国文学发展到今天的一个必然涌流,它并非人为的规范,而是人的自觉(中华民族自我意识的新觉醒)与文的自觉(当代文学摆脱依附性重建独立性格)的交汇的自然现象
  • 嫡妻

    嫡妻

    宋青葙绝望中嫁了个臭名昭著、轻薄无行的男人,成亲后,她才发现,这个男人并非只是声名狼藉……
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 古龙文集:绝不低头

    古龙文集:绝不低头

    《绝不低头》,是古龙唯一一部现代都市武侠作品,“江湖名篇”之一。古龙说:“每个人都会变的。唯一永恒不变的,只有时间,因为时间最无情。在这无情的时间推移中,每个人都会不知不觉地慢慢改变。”所以,波波变了,黑豹变了,罗烈也变了,三个人的命运却依旧交织在一起。好在总有一些东西无论如何都不会改变,只要想认真活下去,勇气、侠义、爱与宽容,都是不可或缺的精神源泉。