登陆注册
3237100000002

第2章

0168之谜

将长为L的线段分为两部分,使其中一部分对于全部的比等于另外一部分对于这部分的比。即x∶L=(L-x)∶x,这样的分割称为“黄金分割”,又叫“黄金律”、“中外比”。

解上述比例,可求得x/L=0168。

自古希腊始,人们就认为1∶0168这种比在造型艺术中具有美学价值,如在工艺美术和日常生活用品的长和宽的设计中运用这种比例易引起美感。我国着名数学家华罗庚运用“黄金分割”创造了优选法,对促进我国的现代化建设起了十分重要的作用。

黄金数

用代数解方程的知识可以求得中外比的比值。

设线段全长AB=a,大段AP=x,则小段BP=a-x,

于是,a-xx=xa

即x2+ax-a2=0

x-a±5a2

舍去负根,得x=5-12a

因此,xa=5-12a

这就是说,中外比的比值为5-12

中外比的比值,叫做“黄金数”,用记号g表示。请记住:

g=5-12。

由于5=2236……所以g=0618。

黄金分割法

2000多年前,古希腊的柏拉图派学者欧多克斯,首先使用规尺分已知线段为“黄金分割”,他的作法如下:

1过B点,作BCAB,而且使BC=12AB;

2连AC;

3以C为圆心,CB为半径作圆弧,交AC于D;

4以A为圆心,AD为半径作圆弧交线段AB于P,则P点分AB成黄金分割。

这个作法十分简便,证明也很容易。

设AB=a,则BC=a2,由勾股定理可知:

AC=AB2+BC2=a2+(a2)=52a;

AD=AC-DC=52a-a2=5-12a;

AP=AD=5-12a。

这就证明了,P点分AB成黄金分割。

这个作图方法,叫做“黄金分割法”,P点为“黄金分割点”。

辗转分割

设点P1将线段AB分成黄金分割,即BP1∶AP1=g;

取AB中点O,作点P1关于点O的对称点P2,则点P2有下述重要性质:

1.点P2也将线段AB分成黄金分割。

这是因为:

AP2=BP1,BP2=AP1,

AP2∶BP2=BP1∶AP1=g,

所以点P2也分AB成黄金分割由此可知,每条线段有两个黄金分割点。

2.点P2还分线段AP1成黄金分割。

证明如下:由于BP1∶AP1=g,而AP2=BP1,

所以AP2∶AP1=g,这就说明P2分AP1成黄金分割。

3.作P2,关于线段AP1中点的对称点P3,则AP3将AP2黄金分割。如此继续利用对称,辗转相割,可以得到一系列的黄金分割点。

黄金矩形

国外,有位画家举办过一次画展,所有的画面都是不同比例的矩形,有的狭长,有的正方。据统计数字表明,观众最喜爱的宽与长之比为g的矩形画面。人们称这种矩形为“黄金矩形”。

黄金矩形有个奇特的性质,如果矩形ABCD是黄金矩形,即DA∶AB=g,在它的内部截去一个正黄金矩形。这个过程继续下去,还可以得到一系列的黄金矩形。这个美妙的结论,请你自己证明吧。

神秘的“5”

“5”这个数,在日常生活中到处可见,钞票面值有5元、5角、5分;秤杆上,表示5的地方刻有一颗星;在算盘上,一粒上珠代表5;正常情况下,人的每只手有5个手指,每只脚有5个脚趾;不少的花,如梅花、桃花都有5个花瓣;海洋中的一种色彩斑斓的无脊椎动物海星,它的肢体有5个分叉,呈五角星状。

总之,“5”这个数无所不在。当然数学本身不能没有它。

在数学上,只有5种正多面体——正四面体、正六面体(立方体)、正八面体、正十二面体与正二十面体。5阶以下的有限群一定是可交换群;一般的二次、三次和四次代数方程都可以用根式求解,但一般的五次方程就无法用根式来求解。5还是一个素数,5和它前面的一个素数3相差2,这种差2的素数在数论中有个专门名词叫孪生素数。人们猜测孪生素数可能有无穷多,而3和5则是最小的一对孪生素数。

前些年,美国数学家马丁·加德纳曾描述过一个有趣的人物——矩阵博士。

这位博士是个美国人,他的妻子是日本人,但早已亡故,只留下一个混血种的女儿伊娃。他们父女二人相依为命,博士常带着女儿漂洋过海,闯荡江湖,在世界各地都有他们的足迹。

博士对数论、抽象代数有许多精辟之见。虽然他说的话乍一听似乎荒诞不经,可拿事实去验证他所说的离奇现象与规律时,却又发现博士的“预言”都是正确的。

有一次,博士来到印度的加尔各答。他说古道今,大谈“无所不在的5”。

博士指出,在印度的寺庙里,供奉着许多降魔金刚,信仰这些金刚的教派之中心教义一共有5条,其中一条是所谓宇宙的永劫轮回说,即认为宇宙经过5百亿年的不断膨胀后,又要经过5百亿年的不断收缩,直到变成一个黑洞,然后又开始下一轮的膨胀与收缩。如此周而复始,循环不已。降魔金刚手中,还拿着宇宙膨胀初期的“原始火球”呢!在这里,博士曾几次提到5这个数字。

向克斯曾把π的小数值算到707位,以前这被认为是一项了不起的工作。自从近代电子计算机发明以后,他的工作简直不算一回事了。现在π值的记录一再被打破,最新的记录是100万位,这是由法国人计算出来的。有意思的是,矩阵博士在这项计算以前,就作了大胆的预言,他说第100万位数必定是个5,结果真是如此!这究竟是用什么办法知道的呢?博士却秘而不宣。

循环往复的周期现象,在科技史上曾起过重大作用,门捷列夫发现元素周期表,就是突出的一例。下面请读者来看一下与5有关的有趣现象。

请任选两个非0的实数,如π与76,并准备一个袖珍电子计算器。假定计算器数字长八位,那么,π的八位数值是31415926。现在请把第二数76加上1作为被除数,把第一个数π作为除数做一下除法,即:

(76+1)÷31415926=24509861我们把显示在计算器上的24509861称为第三数,然后再重复上述过程,把第三数加上1,把第二数作为除数,这就得到了第四位数:0335656,依次类推,可得到第五数、第六数……

也许读者会认为,这些数字都没有规律可循,照这样下去,真是“味同嚼蜡”。然而,当算到第六数时,你将会大吃一惊,原来第六数是31415931,略去这一数字后面二位因计算时四舍五人造成差异的小数,它竟和第一数的π相等,π又回来了!如果你还不太相信,不妨再挑选一些整数,结果保证令人满意。我们可以得出结论,5是一个循环周期,第六数与第一数完全一样,第七数与第二数完全一样……要知道,这一个秘密最初也是矩阵博士想到的呢!

我们且不去计较矩阵博士是否真有其人,可是这神奇的、无所不在的5,却不能不引起人们的极大兴趣,引诱人们去探索和研究。

最大的质数是多少?

小朋友们,你们在学校学习数学吧,有没有觉得数学很有趣呢?也许数学学起来有点难,但是很有用哦,比如说,学好了数学,你们陪爸爸妈妈到超市买东西的时候,就可以帮他们算价钱,看看怎样买更便宜,能替爸爸妈妈省下不少钱啦!

在学校里,数学老师会教小朋友们学习许多数学知识,知道自然数就是像1、2、3……这样的能数出来的数。那么质数是什么呢?质数是一类特殊的自然数,它们只能被自己和1整除。比如说,最小的质数是2,只能被它自己,也就是2,和1整除。接着有3、5、7、11等等,很多很多,小朋友们可以问一下爸爸妈妈或者你们的数学老师,他们会告诉你们的。

质数是一类很有意思的自然数,所以许多数学家都很喜欢研究它们。早在2500年前,古希腊有位着名的数学家欧几里德就仔细研究了质数。他证明质数是有无限多的,也可以无限大的,并且有些的质数可以是2n-1。看到这里,小朋友们一定很疑惑了,究竟这个2n-1是什么意思呢?小朋友们看到2的右上角有一个n对吧?这个拼音字母n可以代替任何的自然数,可以是1、2、5、12、38、59、104等等,随便你能数出来的任何一个。2n的意思就是有n个2相乘。比如说22就是2个2相乘,是4;23就是3个2相乘,就是2×2×2,是多少呢,对了,是8;算个难一点,25是多少呢?就是2×2×2×2×2=?背过九九表的小朋友也一定能算出来是32。这样的话,就不难理解2n-1了,是n个2相乘之后再减1。比如2n-1里n代替2的时候,22-1等于3;n代替3的时候,23-1等于7,3和7都是质数。有兴趣的小朋友可以耐心算一算,看看是不是。

说了这么多,那么究竟现在所知道的最大的质数是多少呢?科学家们算出来是224036583-1,就是说24036583(读作:两千四百零三万六千五百八十三)个2相乘之后再减1。这个数目非常非常大!举个例子来说,地球上每一粒砂子数一遍大概是2120,而16000×2120×2120×2120才大致跟这个质数相当,这样多数目的砂子就算是填满整个宇宙也不过用了很少很少的一部分。

小朋友们,我们人类存在于宇宙中,相比起宇宙来说,是相当的渺小;而我们人类运用的数字,却可以比宇宙巨大得多。数学是这样的富有魔力,不是么?

为什么要用60进制

由于生产、生活的需要,古代人对天文、历法进行了大量的研究工作,这样,就不得不牵涉到时间和角度了。如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。

公元前2100年左右,巴比伦时期的着作已经表明:当时的人们不仅以360天作为1年,而且把圆分成360度,把1度分成60分,把1分分成60秒。这样,1/2,1/3,1/4,1/5,1/6,1/10,1/12,1/15,1/20,1/30,1/60度(分)都可以化为整数了。这给研究天文和历法带来了极大的方便。

我们知道,60进位制与10进位制在本质上是相同的。但由于10进位制有其固有的缺陷,如10不能被3、4、6整除,而60进位制就不存在这些问题。

正因为60进位制(严格说来,是60退位制)有自己的优点,所以也就一直沿用到今天。

现在,数学、物理、航运等科学技术中仍然使用60进位制。数学上把“度”、“分”、“秒”分别记作“°”、“′”、“″”,一律标在数的右上角。时间单位“时”、“分”、“秒”也采用60进位制。如7时35分20秒,记作7:35′20″,这里,用“:”号代替了度的符号“°”。

三角形的108塔群

108塔位于宁夏青铜峡水库西面峻峭的山崖上,因塔数而得名,因此又称百八塔。百八塔座西朝东,背山面水,随山势凿石分阶而建,自上而下,按1、3、5、7……19奇数排列,构成了一个等边三角形的大型塔群。塔的底座为砖砌八角形顶弥座,塔身似覆钵,塔顶如宝珠,高2米左右,是一种实心喇嘛塔。最上一塔,形制特大,以下逐层按比例缩小,远望能观塔群全貌,很符合视线的透视原理,体现了古代匠师的聪明才智,真称得上是别具一格。传说,这里曾是穆桂英的“天门阵”、“点将台”。其实,108塔是佛家惯用之数,念佛108遍,数珠108颗,晓钟108响。这里的108塔,估计与佛教密宗《金刚顶经》中昆卢庶那108尊法身有关。但真正的缘由是什么,至今还是一个谜。

魔术数

1986年全国初中数学竞赛题第一题第3小题提到魔术数,原题是:将自然数N接写在每一个自然数的右面,如果得到的新数都能被N整除,那么N称为魔术数,在小于130的自然数中,魔术数的个数是。

乍看起来,问题较棘手,但认真分析,并不难解决。

大家在理解魔术数定义时,就注意这几个字:“接写”、“每一个”(即任何一个),“都能”。

例如,把偶数2接写在任何一个自然数右面得到的新数都是偶数,都能被2整除,所以2是魔术数。

怎样求魔术数呢?

设a为魔术数,把a接写在任何一个自然数x的右面得到的新数xa。

1若a为一位数,则xa=10x+a能被a整除,即对任何一个自然数x,10x都能被a整除,就是10应是a的倍数,则a只能是1,2,5共3个。

2若a为二位数,则xa=100x+a能被a整除,100应是a的倍数,a只能是10=1×10,20=2×10,25,50=5×10,共4个。

3若a为三位数,则xa=1000x+a能被a整除,1000应是a的倍数,a只能是100=1×102,125,200=2×102,250=25×10,500=5×102,共5个。

同理,若a为四位数,a只能是1000=1×103,2000=2×103,5000=5×103,1250=125×10,2500=25×102。

一般地,当a为n位数(n3)时,魔术数可用以下形式表示:

1×10n-1,2×10n-1,5×10n-1,25×10n-2125×10n-3。

这样,我们便可以求出小于任何给定的自然数的魔术数及其个数。小于130的魔术数共9个:1,2,5,10,20,25,50,100,125,小于10的魔术数为3个,小于100的魔术数为7个,小于1000的魔术数为12个,小于10000的魔术数为17个……

我们观察n位数的魔术数的个数:

当n=1时为3个;

当n=2时为4个;

当n=k(k3)时总是5个。

所以,n2时,n增加1,n位数的魔术数的个数就增加5个。或者说,n位数(n2)以内的魔术数的个数正好组成公差为5的等差数列:7,12,17,22,27,32……

最大的和最小的

(1)三个1,不另加任何数学运算符号,能写成的最大的数是什么?能写成的最小的数是什么?

(2)四个1,不另加任何数学运算符号,能写成的最大的数和最小的数是什么?

(3)三个2,不另加任何数学运算符号,能写成的最大的数和最小的数是什么?

(4)三个4,不另加任何数学运算符号,能写成的最大的数和最小的数是什么?

你在回答这些问题时会发现,它们都是需要仔细想一想才能正确回答的问题。

(1)很明显,111是最大数的,111=1是最小数。

(2)如果你从(1)的经验出发,以为1111是最大数,就错了。这里最大的数是1111。事实上,113=1331>1111,而1111比1111更要大得多。最小的数当然还是1111=1。

(3)不要以为222是最大数,相反,它却是最小的数。这里,最大的数是222=4194304。它比222或222都要大得多。

(4)你根据(3)可能以为444是最大的数,这又错了。这里的最大的数却是。因为444=4256。显然4256444(“”表示远远大于)。最小的数是444。

现在,你能不加任何运算符号,写出三个3,三个5,三个6……的最大数和最小数了吗?

“1+1”

1742年6月7日,当时还是中学教师的哥德巴赫,写信给当时侨居俄国彼得堡的数学家欧拉一封信,问道:“是否任何不小于6的偶数,均可表为两个奇素数之和?”因为哥德巴赫喜欢搞拆数游戏。20几天后,欧拉复信写道:“任何大于6的偶数,都是两个奇素数之和。这一猜想,虽然我还不能证明它,但是我确信无疑地认为这是完全正确的定理。”这就是一直未被世人彻底解决的着名的哥德巴赫猜想,也称哥德巴赫-欧拉猜想。数学家简称这个问题为(1,1),或“1+1”。命题简述为:

(A)每一个6的偶数都可表为两个奇素数之和;

(B)每一个9的奇数都可表为三个奇素数之和。

显然,命题(B)是(A)的推论。因为任何一个奇数,如减掉一个奇素数,当然就是偶数了。此时如能证明命题(A),当然命题(B)就得证了。但是,这两个问题没有可逆性。命题(B)在本世纪30年代,前苏联科学家依·维诺格拉朵夫创造了一系列估计指数和重要方法,从而使他在1937年,间接地证明了命题(B)。

1930年,会尼列尔曼用密率法证明了每一个自然数可以表为不超过k个素数的和,这时K是一个固定的自然数。开始定出的k=2+1010,很快就有人把它降为k=69。利用密率法得到的最好结果是k=18,即每一个自然数可以表为18个素数的和。这里说的每一个自然数,不是充分大的自然数。这是密率法独具的优点,用其他方法(圆法和筛法)只能得出关于充分大的自然数的结论。

1937年,前苏联数学家维纳格拉道夫用圆法证明了每个充分大的奇素等于3个素数的和。随后有人证明这里的“充分大”可用“>eC16·038”来代替。这个数超过400万位,是一个非常巨大的数。现在这个常数已经大大缩小,但仍然是一个很可观的大数。

在240多年的漫长的岁月里,有人对哥德巴赫猜想进行了大量验算工作,有人曾经验算过偶数x5×188,即x在5亿以内,哥德巴赫猜想都是对的。

在此期间,有些人更想过一些办法,例如折叠法,他们将自然数比着很长的梳子上的各个齿,先将代表复合数的齿全部掰掉,剩下来的,当然都是素数。然后再把同样的梳子,颠倒过来对上,如果梳子上原有的齿为偶数x个,这样将1对着x-1,3对着x-3……p对着x-p,(1px-1)。因为在x较大时,不能证明是否还存在齿对着齿情况,故问题没有解决。

同类推荐
  • 成长人生必修课(指导学生身心健康发展故事集)

    成长人生必修课(指导学生身心健康发展故事集)

    学生时代,是一个充满理想的季节,也是人体发育的转折关键期,这一时期,如何正确认识和对待自己的生理变化,怎样面对生活和生理的各种烦恼,是决定青少年身心是否健康的关键。
  • 别笑,我是高考零分作文(第4季)

    别笑,我是高考零分作文(第4季)

    最雷人、最搞笑、最荒诞、最天才的零分作文,高考一族的减压零食,都市白领的幽默早餐!另附小学生爆笑“撒谎作文”必杀篇,绝对挑战你的想象极限!《央视新闻频道》等28家电视台,《新华日报》《南方日报》《重庆晨报》等120家报纸、数千家网站报道推荐!
  • 海底两万里(中小学生必读丛书)

    海底两万里(中小学生必读丛书)

    《海底两万里》:教育部推荐书目。新课标同步课外阅读。异国情调与浪漫主义的完美结合,描绘多姿多彩气象万千的海底世界,成就一部惊心动魄永生难忘的科幻经典。
  • 教你打排球(学生球类运动学习手册)

    教你打排球(学生球类运动学习手册)

    21世纪,人类进入了新经济时代。综合国力竞争的实质是民族素质的竞争,是人才的竞争,是教育的竞争。在这样的背景下,加强素质教育,尤其是进行身体素质教育就显得更为重要。球类运动是世界上开展的最广泛的运动项目之一,也是广大体育爱好者乐于观赏和参与的体育运动。经常进行此类运动,不仅可以增强人们的体质,提升身体的协调性,而且还能增强我们的自信心以及培养团队精神。
  • 考试高手

    考试高手

    本书从心理、复习方案、考前准备方略、考试方略、选择题方略、非选择题方略、选志愿方略七个方面,介绍了考试高手的成功秘笈。
热门推荐
  • 世界文学知识大课堂:南北欧现代文学大家

    世界文学知识大课堂:南北欧现代文学大家

    保加利亚现代文学大家,阿尔巴尼亚现代文学大家,塞尔维亚和黑山现代文学大家,意大利现代文学大家等南北欧现代文学大家。优秀的文学作品能使人产生如临其境、如见其人、如闻其声的感觉,并从思想感情上受到感染、教育和陶冶。文学是语言的艺术,是以语言为工具来塑造艺术形象的,虽然其具有形象的间接性,但它能多方面立体性地展示社会生活,甚至表现社会生活的发展过程,展示人与人之间的错综复杂的社会关系和人物的内心精神世界。
  • 中国帝王后妃陵墓之谜

    中国帝王后妃陵墓之谜

    本书以文献资料为依据,以考古发现的实物史料为佐证,综合前人研究,对历代帝王陵墓的体制特点及其发生、发展和盛衰演变过程中的一些问题进行介绍,力图将本书写成融学术性、知识性于一体的历史知识读本。
  • 唐立淇2013星座运程:射手座

    唐立淇2013星座运程:射手座

    2012年对射手来说,心情真是百味杂陈,上半年还是那么充满希望,觉得自己还有机会能够向上攀爬,所以用了更多的心力、信用、资产去拼搏,但是一进入下半年,射手就被“黑暗、郁闷”等各种状况笼罩,究竟是要硬撑到关卡过去,还是认输退出?都在考验着射手的智慧。2013年上半年,被压力笼罩的苦闷感仍持续,直到3月才会有“看清事实”的感觉,不妨趁此时拿出自信,掌握“可以独立”的契机。
  • 中华五千年历史之谜

    中华五千年历史之谜

    “创造历史的人是在时光沙滩上留下脚印”。从钻木取火、结绳记事的远古时期到今天的飞船造访月球,从哥白尼的天体运行论到牛顿提出万有引力……可以说,人类发展史是一部探索史与奋斗史。随着科技的不断进步,人类对自身发展史的分析与观察也更为细微、更为拓展,从而又让人们挖掘、发现了历史更多、更玄奥的谜团和疑问……
  • 培养青少年树立榜样的故事(青少年健康成长大课堂)

    培养青少年树立榜样的故事(青少年健康成长大课堂)

    一滴水可以折射阳光的光辉,一本好书可以滋润美好的心灵。健康的身心、丰富的情感、较强的实践能力、优良的品质、过硬的特殊技能、良好的习惯、深厚的文化底蕴及必要的合作素质等,是青少年朋友在成长道路上顺利前进所需要的最基础、最必要的条件,为青少年朋友们从自身着眼、开创成功指明了方向。社会是一幅斑驳陆离的图画,人生是一条蜿蜒扭动的曲线。知识是智慧和能力的基础。知识能够守护生命,是保护自己的盔甲。
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 容易读错 写错 用错的字词大全集(超值金版)

    容易读错 写错 用错的字词大全集(超值金版)

    都详细地介绍了导致错误的原因,并介绍了科学的区分方法,每部分内容的开始,帮助读者建立科学的思考和学习方法。每部分的内容中择取了目前比较常见的容易出错的字词,并进行了适当的注释和详细、清晰的辨析,最后还附有例句,帮助读者进一步了解和区分。《容易读错写错用错的字词大全集(超值金版)》中还穿插一些趣味故事、开拓思维题目和知识解读等内容,本书分“容易读错的字词”“容易写错的字词”和“容易用错的字词”三大部分,帮助大家开拓思维,扩大知识面,保证大家阅读起来轻松愉快,受益匪浅
  • 世界最具品味性的小品随笔(2)

    世界最具品味性的小品随笔(2)

    我的课外第一本书——震撼心灵阅读之旅经典文库,《阅读文库》编委会编。通过各种形式的故事和语言,讲述我们在成长中需要的知识。
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 读诗偶得:庐隐作品精选

    读诗偶得:庐隐作品精选

    文学作品是以语言为手段塑造形象来反映社会生活、表达作者思想感情的一种艺术,是我们的一面镜子,对于我们的人生具有潜移默化的巨大启迪作用,能够开阔我们的视野,增长我们的知识,陶冶我们的情操。文学大师是一个时代的开拓者和各种文学形式的集大成者,他们的作品来源于他们生活的时代,记载了那个时代社会生活的缩影,包含了作家本人对社会、生活的体验与思考,影响着社会的发展进程,具有永恒的魅力。他们是我们心灵的工程师,能够指导我们的人生发展,给予我们心灵鸡汤般的精神滋养。