登陆注册
3237000000010

第10章

推算一下兔子的对数是很有意思的。为了叙述更有条理,我们假设最初的一对兔子出生在头一年的12月份。显然,1月份里只有1对兔子;到2月份时,这对兔子生了1对小兔,总共有2对兔子;在3月份里,这对兔子又生了1对小兔,总共有3对小兔子;到4月份时,2月份出生的兔子开始生小兔了,这个月共出生了2对小兔,所以共有5对兔子;在5月份里,不仅最初的那对兔子和2月份出生的兔子各生了1对小兔,3月份出生的兔子也生了1对小兔,总共出生了3对兔子,所以共有8对兔子……照这样继续推算下去,当然能够算出题目的答案,不过,斐波拉契对这种方法很不满意,他觉得这种方法太繁琐了,而且越推算到后面情况越复杂,稍一不慎就会出现差错。于是他又深入探索了题中的数量关系,终于找到了一种简捷的解题方法。

斐波拉契把推算得到的头几个数摆成一串。

1,1,2,3,5,8……这串数里隐含着一个规律,从第3个数起,后面的每个数都是它前面那两数的和。而根据这个规律,只要作一些简单的加法,就能推算出以后各个月兔子的数目了。

这样,要知道1年后兔子的对数是多少,也就是看这串数的第13个数是多少。由5+8=13,8+13=21,13+21=34,21+34=55,34+55=89,55+89=144,89+144=233,不难算出题目的答案是233对。

按照这个规律推算出来的数,构成了数学史上一个有名的数列。大家都叫它“斐波拉契数列”。这个数列有许多奇特的性质,例如,从第3个数起,每个数与它后面那个数的比值,都很接近0618,正好与大名鼎鼎的“黄金分割律”相吻合。人们还发现,连一些生物的生长规律,在某种假定下也可由这个数列来刻画呢。

托尔斯泰问题

19世纪时,俄国有位大文豪叫列夫·托尔斯泰。他的作品形象生动逼真,心理描写细腻,语言优美,用词准确鲜明,对欧洲和世界文学产生过巨大影响。如《战争与和平》、《复活》等等,至今仍然拥有千千万万的读者。

这位大文豪又是一个有名的“数学迷”。每当创作余暇,只要见到了有趣的数学题目,他就会丢下其他事情,沉湎于数学演算之中。他还动手编了许多数学题,这些题目都很有趣而且都不太难,富于思考性,因而在俄罗斯少年中广为流传。例如:

一些割草人在两块草地上割草,大草地的面积比小草地大1倍。上午,全体割草人都在大草地上割草。下午他们对半分开,一半人留在大草地上,到傍晚时把剩下的草割完;另一半人到小草地上去割草,到傍晚还剩下一小块没割完。这一小块地上的草第二天由一个割草人割完。假定每半天的劳动时间相等,每个割草人的工作效率也相等。问共有多少割草人?

这是托尔斯泰最为欣赏的一道数学题,他经常向人提起这个题目,并花费了许多时间去寻找它的各种解法。下面这种巧妙的算术解法,相传是托尔斯泰年轻时发现的。

在大草地上,因为全体人割了一上午,一半的人又割了一下午才将草割完,所以,如果把大草地的面积看作是1,那么,一半的人在半天时间里的割草面积就是1/3。

在小草地上,另一半人曾工作了一个下午。由于每人的工效相等,这样,他们在这半天时间里的割草面积也是1/3。

由此可以算出第一天割草总面积为4/3。

剩下的面积是多少呢?由大草地的面积比小草地大1倍,可知小草地的总面积是1/2。因为第一天下午已割了1/3,所以还剩下1/6。这小块地上的草第二天由1个人割完,说明每个割草人每天割草面积是1/6。

将第一天割草总面积除以第一天每人割草面积,就是参加割草的总人数。

43÷16=8(人)后来,托尔斯泰又发现可以用图解法来解答这个题目,他对这种解法特别满意。因为不需要作更多的解释,只要画出了这个图形,题目的答案也就呼之即出了。

奇特的墓志铭

在大数学家阿基米德的墓碑上,镌刻着一个有趣的几何图形:一个圆球镶嵌在一个圆柱内。相传,它是阿基米德生前最为欣赏的一个定理。

在数学家鲁道夫的墓碑上,则镌刻着圆周率π的35位数值。这个数值被叫做“鲁道夫数”,它是鲁道夫毕生心血的结晶。

大数学家高斯曾经表示,在他去世以后,希望人们在他的墓碑上刻上一个正17边形。因为他是在完成了正17边形的尺规作图后,才决定献身于数学研究的……不过,最奇特的墓志铭,却是属于古希腊数学家丢番图的。他的墓碑上刻着一道谜语般的数学题:

过路人,这座石墓里安葬着丢番图。他生命的1/6是幸福的童年,生命的1/12是青少年时期。又过了生命的1/7他才结婚。婚后5年有一个孩子,孩子活到他父亲一半的年纪便死去了。孩子死后,丢番图在深深的悲哀中又活了4年,也结束了尘世生涯。过路人,你知道丢番图的年纪吗?”

丢番图的年纪究竟有多大呢?

设他活了X岁,依题意有:16X+112X+17X+5+12X+4=X。

这样,要知道丢番图的年纪,只要解出这个方程就行了。

这段墓志铭写得太妙了。谁想知道丢番图的年纪,谁就得解一个一元一次方程;而这又正好提醒前来瞻仰的人们,不要忘记了丢番图献身的事业。

在丢番图之前,古希腊数学家习惯用几何的观点看待遇到的所有数学问题,而丢番图则不然,他是古希腊第一个大代数学家,喜欢用代数的方法来解决问题。现代解方程的基本步骤,如移项、合并同类项、方程两边乘以同一因子等等,丢番图都已知道了。他尤其擅长解答不定方程,发明了许多巧妙的方法,被西方数学家誉为这门数学分支的开山鼻祖。

丢番图也是古希腊最后一个大数学家,遗憾的是,关于他的生平,后人几乎一无所知,即不知道他生于何地,也不知道他卒于何时,幸亏有了这段奇特的墓志铭,才知道他曾享有84岁的高龄。

推算科学家的年龄

一位科学家在几年前逝世,逝世时的年龄是他出生年数的129。如果这位科学家在1955年主持过一次学术讨论会,求他当时的年龄。

分析:要想求出这位科学家在1955年时的年龄,首先必须知道他在哪一年出生。而这个出生年数应满足条件:是29的倍数;小于1955。把小于1955的29的倍数罗列出来:

1943,1914,1885,1856……在这些数中,哪一个是这位科学家的出生年数呢?如果是1885,那么科学家在1955年的年龄就是:1955-1885=70,但他逝世时的年龄却是1885÷29=65,这显然是个矛盾。即科学家不能在1885年出生;同样的方法可以说明在比1885年更早的年数里出生也不行。现在,还剩下1943和1914两个数。如果在1943年出生,不难知道学者在1955年的年龄为12岁,这是不符合事实的,因为科学家不可能的情况都排除,就可以知道出生年数为1914年,1955年时他的年龄为41岁。解决这个问题的基本思路就是“筛”法,其中也运用了归谬法的思路。

谁的算法对

伊格纳托夫是前苏联着名的科普作家,他一生写下了许多题材新颖、内容丰富、形式活泼的作品,伐木人的争论是其作品中的一道题。

尼基塔和巴维尔是两个伐木人。有一天,俩人干完活正准备吃饭,迎面走来一个猎人:“你们好哪,兄弟们!我在森林里迷了路,离村庄又远,饿得心慌,请分给我一些吃的吧!”

“行啊,行啊,你坐下吧!尼基塔有4张饼,我有7张饼,咱们在一起凑合着吃吧”巴维尔热情地说。尼基塔也随声附和着。于是三人平均分吃了11张饼。吃过饭,猎人摸出11个戈比,说道:“请别见怪,我身上只有这些钱了,你俩商量着分吧!”

猎人走后,两个伐木人争论起来。尼基塔说:“我看这钱应该平分!”巴维尔分驳说:“11张饼的钱是11个戈比。正好是1张饼1个戈比,你应得4个,我应得7个!”

他们俩的算法,谁的对呢?显然尼基塔的算法是错的,两人带的饼的数目不同,当然分得的钱也应不同。再看巴维尔的算法:11张饼,11个戈比,每张饼1个戈比,看起来非常合理,如果问题是“猎人用11个戈比买了11张饼”,那么巴维尔的算法的确是正确的。可问题是“3个人平均分吃了11张饼,并且尼基塔和巴维尔带的饼又不一样多”,实际上,11张饼平均分给3个人,就是说,每人吃了113张饼。尼基塔有4张饼,自己吃了113张饼,他给猎人吃了4-113=13张。而巴维尔也吃了113张,他分给猎人7-113=103张。

猎人吃了113张饼,付给11个戈比,也就是说,每次13张饼猎人付给一个戈比。他吃了尼基塔13张饼,故尼基塔应得1戈比,他吃了巴维尔103张饼,巴维尔应得10戈比,两个人的算法都错了。

三等分角问题

只准用直尺和圆规,你能将一个任意的角两等分吗?

这是一个很简单的几何作图题。几千年前,数学家们就已掌握了它的作图方法。

在纸上任意画一个角,以这个角的顶点O为圆心,任意选一个长度为半径画弧,找出这段弧与两条边的交点A、B。

然后,分别以A点和B点为圆心,以同一个半径画弧,只要选用的半径比A、B之间的距离的一半还大些,这两段弧就会相交。找出这两段弧的交点C。

最后,用直尺将O点与C点联接起来。不难验证,直线OC已经将这个任意角分成了相等的两部分。

显然,采用同样的方法,是不难将一个任意角4等分、8等分或者16等分的;只要有耐心,将一个任意角512等分或者1024等分,也都不会是一件太难的事情。

那么,只准用直尺与圆规,能不能将一个任意角3等分呢?

这个题目看上去也很容易,似乎与两等分角问题差不多。所以,在2000多年前,当古希腊人见到这个题目时,有不少人甚至不假思索就拿起了直尺与圆规……一天过去了,一年过去了,人们磨秃了无数支笔,始终也画不出一个符合题意的图形来!

由2等分到3等分,难道仅仅由于这么一点小小的变化,一道平淡无奇的几何作图题,就变成了一座高深莫测的数学迷宫?

这个题目吸引了许多数学家。公元前3世纪时,古希腊最伟大的数学家阿基米德,也曾拿起直尺与圆规,用这个题目测试过自己的智力。

阿基米德想出了一个办法。他预先在直尺上记一点P,令直尺的一个端点为C。对于任意画的一角,他以这个角的顶点O为圆心,以CP的长度为半径画半个圆,使这半个圆与角的两条边相交于A、B两点。

然后,阿基米德移动直尺,使C点在AO的延长线上移动,使p点在圆周上移动。当直尺正好通过B点时停止移动,将C、P、B三点连接起来。

接下来,阿基米德将直尺沿直线CPB平行移动,使C点正好移动到O点,作直线OD。

可以检验,AOD正好是原来的角AOB的1/3。也就是说,阿基米德已经将一个任意角分成了3等分。

但是,人们不承认阿基米德解决了三等分角问题。

为什么不承认呢?理由很简单:阿基米德预先在直尺上作了一个记号P,使直尺实际上具备有刻度的功能。这是一个不能容许的“犯规”动作。因为古希腊人规定:在尺规作图法中,直尺上不能有任何刻度,而且直尺与圆规都只准许使用有限次。

阿基米德失败了。但他的解法表明,仅仅在直尺上作一个记号,马上就可以走出这座数学迷宫。数学家们想:能不能先不在直尺上作记号,而在实际作图的过程中,逐步把这个点给找出来呢……古希腊数学家全都失败了。2000多年来,这个问题激动了一代又一代的数学家,成为一个举世闻名的数学难题。笛卡儿、牛顿等许许多多最优秀的数学家,也都曾拿起直尺圆规,用这个难题测试过自己的智力……无数的人都失败了。2000多年里,从初学几何的少年到天才的数学大师,谁也不能只用直尺和圆规将一个任意角三等分!一次接一次的失败,使得后来的人们变得审慎起来。渐渐地,人们心中生发出一个巨大问号:三等分一个任意角,是不是一定能用直尺与圆规作出来呢?如果这个题目根本无法由尺规作出,硬要用直尺与圆规去尝试,岂不是白费气力?

以后,数学家们开始了新的探索。因为,谁要是能从理论上予以证明:三等分任意角是无法由尺规作出的,那么,他也就解决了这个着名的数学难题。

1837年,数学家们终于赢得了胜利。法国数学家闻脱兹尔宣布:只准许使用直尺与圆规,想三等分一个任意角是根本不可能的!

这样,他率先走出了这座困惑了无数人的数学迷宫,了结了这桩长达2000多年的数学悬案。

化圆为方问题

同类推荐
  • 礼仪常识悦读

    礼仪常识悦读

    严谨务实的原则,总结了人们日常生活中最为常见的礼仪常识和礼仪规范。从个人修养的角度来看,礼仪可以说是一个人内在修养和素质的外在表现。从交际的角度来看,礼仪可以说是人际交往中适用的一种艺术。从传播的角度来看,礼仪可以说是在人际交往中进行相互沟通的技巧。礼仪是人们进行社会交往活动的行为规范与准则。快来看看这些礼仪常识吧!
  • 校园聚焦

    校园聚焦

    我们中小学生必须要加强阅读量,以便提高自己的语文素养和写作能力,以便广开视野和见识,促进身心素质不断地健康成长。但是,现在各种各样的读物卷帙浩繁,而广大中小学生时间又十分有限,因此,找到适合自己阅读的读物,才能够轻松快速地达到阅读的效果。
  • 战争与和平(语文新课标课外必读第五辑)

    战争与和平(语文新课标课外必读第五辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 归纳类比法训练(青少年提高逻辑思维能力训练集)

    归纳类比法训练(青少年提高逻辑思维能力训练集)

    当今时代是一个知识爆炸的时代,也是一个头脑竞争的时代;在竞争日益激烈的环境下,一个人想要很好地生存,不仅需要付出勤奋,而且还必须具有智慧。随着人才竞争的日趋激烈和高智能化,越来越多的人认识到只拥有知识是远远不够的。因为知识本身并不能告诉我们如何去运用知识,如何去解决问题,如何去创新,而这一切都要靠人的智慧,也就是大脑思维来解决。认真观察周围的人我们也会发现,那些在社会上有所成就的人无不是具有卓越思维能力的人。
  • 商业经理学习辅导

    商业经理学习辅导

    本书编写方法力求做到理论与实践结合,原理与方法结合,传统管理与新的经验结合,目的是帮助商业经理掌握较深厚的基础知识,打下较扎实的功底。因此,本书不仅辅导应试,还是商业经理和其他商业干部的日常工具书,也可作为高等院校(包括各种业余大学)商业专业学生的辅助读物。
热门推荐
  • 做高效能管理者:管理者应该向狼学习的9条管理哲学

    做高效能管理者:管理者应该向狼学习的9条管理哲学

    在当今社会,企业的生存环境日趋恶劣,如同狼的生存环境一样,竞争不断,险象环生,别说发展,就连最起码的生存都不再脊易 那么对于企业管理者来说,到底该如何应对呢?
  • 绝美医后:皇上不安分

    绝美医后:皇上不安分

    看着两张一模一样的俊脸,她迷惑了:“你们谁是皇上?”那个男人大步上前,轻而易举的扣住她的腰,霸道的在她唇上一吻:“能占有你身心的人,就是皇上。”
  • 炽爱似火:夺心邪少

    炽爱似火:夺心邪少

    他妖孽般俊美脸庞,自认为能迷惑世间所有女人,游戏人间玩世不恭在莺莺燕燕之中徘徊,她的出现成功夺取了他的心房,第一次付出真情!结果她成了他嫂子。痛苦万般从大少爷落魄成流浪汉,在他人生最低谷期遇到了,宛如一朵蓝玫瑰似的她,她的出现改变了他人生观价值观,可始终无法得到她的爱!他发誓这一生必须追到她为止!
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 天才邪医

    天才邪医

    偶得未来传承,觉醒第三只眼;修补基因缺陷,开启潜能进化。了悟阴阳之气,成就天目神医;行于真善美间,逍遥红尘之外。---1.确保质量,每天保底2更,月票加更。求订阅、月票、推荐支持,感激不尽。2.群64537585、22240971、186494501欢迎加入。
  • 时间背后的河流

    时间背后的河流

    《时间背后的河流》收录了叶延滨最重要短诗作品,主要包括《干妈》、《环行公路的圆和古城的直线》、《囚徒与白鸽》、《寺中扫帚声》、《蜜月箴言》、《时间到了》、《最后的年轮》、《现代生态学》、《月族》、《石碑与青藤》、《一个人在城外》等百余首,供文学爱好者欣赏。
  • 帝国风情画

    帝国风情画

    无与伦比的绝美高维度智慧星叶,机缘巧合,改造男主常凯轩身体机能,帮助他成为隐形全球富豪,同时令他可以穿梭于时空和历史,在游戏世界和现实世界切换自如,对战美国航母和日本自卫队、玄海争霸只是惊心动魄的开始。与此同时,萧华、兰小诺、段颐、艳紫。。。。。。一段段甜美虐恋随着他的奇异之旅此起彼伏延绵不断。
  • 三世明月:不成仙便为魔

    三世明月:不成仙便为魔

    三世轮回谁知孰轻孰重?仙与魔不过一念之差,她非仙亦非魔,却纵横三界。世人都说神仙好,而她眼中所谓的神仙不过是披着普度众生的私心邪魔!这难道是她三观不正吗?她说:“魔有什么不好?世间万物生灵皆有情,我就是喜欢这万丈红尘。”他说:“月儿成魔我便随之,你们这些道貌岸然的神仙不配和她相提并论!”就连可爱的、不!威武的小神兽也表示当个魔兽还不赖!
  • 无敌大小姐

    无敌大小姐

    当现代阴狠毒辣,手段极多的火家大小姐火无情,穿越到一个好色如命,花痴草包大小姐身上,会发生怎样的化学反应?火无情一醒过来就发现,自己竟然在众目睽睽之下上演脱衣秀。周围还有一群围观者。这一发现,让她极为不爽。刚刚穿好衣服,便看到一个声称是自家老头的老不死气势汹汹的跑来问罪。刚上来,就要打她。这还得了?她火无情从生自死,都是王者。敢动她的人,都在和阎王喝茶。于是,她一怒之下,打了老爹。众人皆道:火家小姐阴狠毒辣,竟然连老爹都不放在眼里。就这样,她的罪名又多了一条。蛇蝎美人。穿越后,火无情的麻烦不断。第一天,打了爹。第二天,毁了姐姐的容。第三天,骂了二娘。第四天,当众轻薄了天下第一公子。第五天,火家贴出招亲启事:但凡愿意娶火家大小姐者,皆可去火府报名。来者不限。不怕死,不想活的,欢迎前来。警示:但凡来此,生死皆与火家无关。若有残病者火家一律不负法律责任。本以为无人敢到,岂料是桃花朵朵。美男个个很妖娆一号美人:火无炎。火家大少爷。为人不清楚,手段不清楚。容貌不清楚。唯一清楚的是,他有钱。有多多的钱。火无情语录:钱是好东西。娶了。(此美男,由美瞳掩饰不了你眼神的空洞领养。)火老爷一气之下,昏了过去。家门不幸,家门不幸啊。二号美人:竹清月。江湖人称天上神仙,地上无月。大国师一枚。美得惊天动地。火无情语录:美人好,尤其是自带嫁妆又会预测未来的美人,娶了。(此美男,由东de琳琳领养)三号美人:轩辕子玉。当朝七皇子,游历四国。一张可爱无敌的脸。单纯至极。火无情语录:可爱的孩子好,可爱又乖巧的孩子更好。可爱乖巧又不用给钱的孩子,娶了。(此美男,由刘千绮领养)皇帝听闻,两眼一抹黑。他的儿啊。怎么就这么不争气呢。四号美人:天下第一美男。性格不详,籍贯不详。火无情语录:谜一样的美人,她喜欢。每天都有新鲜感。娶了。(此美男,由告别的爱情li领养。)五号美人:天下第一名伶。火无情语录:解风情的美男,如果没钱花把他卖了都不用调教。娶了。(此美男由伊眸领养。)六号美男:解忧楼楼主。相貌不详,身世不详。爱好杀人。火无情语录:凶恶的美人,她喜欢。娶了。(此美男由陈铭铭领养)七号美男:琴圣。貌如谪仙,琴音杀人。冷清眸子中,百转千回,说尽风流。(此美男由伊眸领养)夜杀:天下第一杀手。(此美男由静寂之夜领养)
  • 节约小窍门(最实用的居家小书)

    节约小窍门(最实用的居家小书)

    节约是一种美德,是对资源的善待,是对环境的保护。节约的行为应该体现在生活的滴点中,从我做起,从小事做起。本书提倡的节约方法,包含了日常生活的方方面面,不仅可以解决您生活中出现的一些小麻烦,还为您打造出绿色健康的生活模式。主要包括:食品在清洗、烹饪、保存的过程中的节约;家用电器的使用中的节约;生活中的变废为宝等。