登陆注册
3235400000005

第5章 1曹冲6岁称象(4)

而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家作了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权力更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹住,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇命令禁止了。

虽然“0”被禁止使用,罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”作出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

20最大的数有多大

其实按理说来,不可能有一个最大的数,因为数是无穷无尽的。不过,历史上也有许多数学家提出“大数”的概念。

古希腊学者阿基米德是历史上最早提出“大数”的人。他在他的一本书中说:有人认为,在全世界所有有人烟和无人迹的地方,沙子的数目是无穷的;也有人认为,沙子的数目不是无穷的,但是想表示沙子的数目是办不到的。但是我的计算表明,如果把所有的海洋和洞穴都填满了沙子,这些沙子的总数不会超过1后面有100个0。

1后面有100个0,如果读出来,就是一万亿亿亿亿亿亿亿亿亿亿亿亿。我们日常遇到的大数,很少有超得过它的。后来的数学家把这个大数起了个名字,叫“古戈”。

有没有比古戈更大的数呢?

有。我们以后要讲到的“到底有多少兔子”中的兔子,繁殖到第571个月的时候,数字已经大于一个古戈了。

古戈在实际生活中是个非常大的数,可是在数学研究里,古戈又太小了。比如,有的数学家发现了有个7067位的大质数,而古戈只有101位,比起这个大质数来,可以说是个小弟弟了。而为了能表示更大的数,数学家又规定了“古戈布来克斯”,一个古戈布来克斯是多少呢?光是它的0,就有一万亿亿亿亿亿亿亿亿亿亿亿亿个呢!

21神秘的大西岛

古希腊有位伟大的哲学家叫做柏拉图,他在他的书中曾根据另一位大政治家梭伦的回忆录,记载了一个叫做大西岛的地方的传说。而这个故事又是梭伦在游历的时候,一些埃及的祭司告诉他的:

在比梭伦还要早9000年的时候,大西岛上有着非常发达的文明。但是,有一次,巨大的灾难降临了大西岛,这个岛连同它的全体居民突然沉到海里去了。据说,这个岛的面积是800000平方英里,而这比在古希腊所濒临的地中海整个的面积都要大,因此,柏拉图只有猜测,这个岛的位置在大西洋里,大西洋的名字最早就是这么来的。

可是,从柏拉图的时代开始,世世代代的人们不断地寻找,始终都没有找到这个神秘的“大西岛”。而在近代,根据地质考察表明:地中海里确实发生过这样一次火山爆发,也确实毁灭了一种文化。但是,这个事件发生在比梭伦那个时代早900年的时候,而不是9000年。不但如此,柏拉图在书里描述过的那个岛的面积,原来说是长3000斯达提亚(古希腊长度单位),宽2000斯达提亚,面积折合约800000平方英里,但是如果把这个大小缩成300×200,就正好和希腊的克里特岛上的一个平原相符了。原来,从梭伦到柏拉图,都犯了一个错误,他们读错了古埃及的数字,把位值提高了一位,把100读成了1000。其实,大西岛就是希腊南部的克里特岛。

22乌龟背上的数

传说在很久很久以前,大禹治水来到洛水。洛水中浮起一只大乌龟,乌龟的背上有一个奇怪的图,图上有许多圈和点。这些圈和点表示什么意思呢?大家都弄不明白,一个人好奇地数了一下龟甲上的点数,再用数字表示出来,发现这里有非常有趣的关系。

把龟甲上的数填入正方形的方格中,不管是把横着的三个数相加,还是把竖着的三个数相加,或者把斜着的三个数相加,它们的和都等于15。

后来,数学家对这个图形进行了深入的研究。在我国古代,把这种方图叫做“纵横图”或者“九宫图”;在国外,则叫它“幻方”。

宋朝有个数学家叫杨辉,他研究出来了一种排列方法:

先画一个图,把1到9从小到大斜着排进图里,然后把最上面的1和最下面的9对调,最左边的7和最右边的3对调,最后把最外面的四个数,填进中间的空格里,就得到了乌龟背上的图了。

23奇妙的1/243

20世纪,有个杰出的物理学家叫范曼,他不但在物理学上很有造诣,也非常有文学才能。他写了一部小说《范曼先生,你在开玩笑啊》,以他自己的经历做题材,记载了他本人和其他的一些科学家在第二次世界大战的时候造出原子弹的故事和其他的一些趣事。

在这本书里,范曼给大家介绍了一个神奇的数:1/243。这个数有什么神奇的地方呢?就是如果用小数来表示,它就等于:0004115226337448559……小朋友们看出来了吗?这个小数的排列特别有规律,411-522-633-744-855。那后面是不是就该是966了呢?可是如果你算下去的话,就会发现,下一个数确实是6,但再下一个数则变成了7,不再像刚才那样有奇妙的规律了。

如果一直除下去的话,那这个小数就是:0004115226337448559670781893,然后又再重新循环下去。这种排列的规律到底是偶然的,还是有什么必然的规律呢?到现在还没有确定的答案。

24兄弟分房子

这是一道托尔斯泰很喜欢的数学题:“兄弟五人平分父亲遗留下来的三所房子。由于房子无法拆分,便同时分给老大、老二和老三。为了补偿,三个哥哥每人付出800元给老四和老五,于是五人所得完全相同。问三所房子总值多少。”

托尔斯泰的解法简单明了:三个哥哥共给两个弟弟800×3=2400(元),两个弟弟平分后各得2400÷2=1200(元),这也就是每个人平分到的钱数。1200×5=6000(元),这是三所房子的总值。

25他是疯子还是大师

如果你不会背1、2、3……你该怎样数数?

在我们的祖先认识数字以前,原始人采用把珠子和铜币逐个相比的方法来判断珠子和铜币哪一个多。这个朴素的“一一对应”原理仍是我们今天数数的方法。所不同的是我们不必再把实物与实物进行比较,而是把实物与自然数的整体(1,2……n)进行比较。比如,当我们数5个珠子时,实际上是把它们分别与1、2、3、4、5一一对应而数出来的。这一思想,被数学家康托成功地用来比较无穷集合的大小:如果两个集合之间存在一一对应,则这两个集合的元素就一样多。

康托的有关无穷的概念,震撼了知识界。

由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。不到30岁的康托向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”。

天才总是不被世人所理解。康托的工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托的集合理论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”。

来自数学权威们的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神分裂症,被送进精神病医院。他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时获得的。

真金不怕火炼,康托的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作“可能是这个时代所能夸耀的最巨大的工作”。

26四对半双休日

暑假里,蓝妹妹和几位精灵约好,8月8日一起回学校看老师。回到家里,忽然想起,老师说过,每逢双休日,他们全家轮流到父母和岳父母家里去看望老人家。8月8日是不是星期六?是不是星期天?但愿不是。

8月8日是星期几呢?实在想不起来。只记得8月份有四对半双休日:4个星期天,5个星期六。

奇怪呀,星期天总是紧跟在星期六后面,可是在8月份,星期六有5个,星期天却只有4个。怎么有一个星期天跟得不紧,竟然跟丢了呢?

紧跟还是不会错的,一定是被挤到界外去了。8月份最后一天刚好是星期六,紧接在它后面的星期天就不是8月的,而是9月的了。

照这样看,8月31日一定是星期六。往前21天,是8月10日,还是星期六。再往前去两天,是8月8日,星期四。

这样就放心了,和精灵们约好的8月8日这天,不是星期六,也不是星期天,这正是蓝妹妹所希望的。

27多才多艺的祖冲之

祖冲之是1500多年前中国的一位数学家。他出生在一个几代人都对天文、历法有研究的家庭,所以,受家庭的熏陶,祖冲之从小就对天文学、机械制造和数学都发生了浓厚的兴趣。祖冲之小时候并不很聪明,但是他学习非常刻苦,认真研读各种科学着作,深入探寻科学道理,并敢于怀疑前人,提出自己的见解。

祖冲之在历史上最有名的,是他对圆周率的研究。圆周率,就是圆的周长和直径的比。早在3500年前,古代巴比伦人就已经算出圆周率的值是3;而在2000多年前我国的数学书里,也把圆周率定为3。三国时候的数学家刘徽,用他自己发现的方法,把圆周率算到了小数点后两位,就是314。而祖冲之觉得刘徽的算法很好,就继续用这种算法研究,推算出圆周率的值在31415926和31415927之间,达到了8位有效数字。他还用分数的方法表达出圆周率,即355/113。这个结果是当时世界上最为精确的圆周率数字。直到1000多年后,外国数学家才求出了更精确的圆周率数值。

在其他的领域,祖冲之也取得了很大的成就。天文学方面,他曾经连续十年,在每天正午的时候,记录铜表上的日影,根据观察结果,制成了当时最科学的历法《太阳历》,其中的测算结果,和现代天文学的测算结果相比只差了50秒。机械制造方面,他制造过一种新型指南车,方向始终正确;他还制造过“千里船”,改革了当时计时用的“漏刻”和运输车辆等等。他还精通音乐,并写过小说,是历史上少有的博学的人物。

祖冲之在世界上也非常有影响。在月球上,有一座环形山,就是以祖冲之的名字命名的,叫做“祖冲之山”。他是我们国家的骄傲。

28埃及金字塔之谜

小朋友,你们一定听说过埃及的“金字塔”吧,它是世界七大奇迹之一,它是古代埃及国王的陵墓,因为形状像汉字的“金”字,所以我们中国人叫它“金字塔”。其中,胡夫金字塔是保存最好的一座,又称大金字塔。

大金字塔大约由230万块石块砌成,外层石块约115000块,平均每块重25吨,像一辆小汽车一样大,而大的甚至超过15块,如果把这些石块凿成平均一立方英尺的小块,把它们沿赤道排成一行,其长度相当于赤道周长的三分之二。

关于金字塔,有很多神秘的传说,其中相当一部分就是在大金字塔中发现的。

曾经有一位叫做约翰的英国人对胡夫金字塔各部分的尺寸进行过仔细的计算。金字塔的底座是一个正方形,边长23036米,高则是14660米。他把正方形相邻的两边相加,再除以高,即:(23036+23036)/14660=46072/14660,得出来的数约是3142,竟是圆周率的值!

为什么大金字塔里竟出现了圆周率呢?约翰怎么想也想不明白,最后竟导致了精神失常。

另一个叫彼特里的英国人,对大金字塔又进行了测量。他发现,大金字塔在线条、角度等方面的误差几乎等于0,在350英尺的长度中,偏差还不到1英寸。

大金字塔的很多谜团,至今仍然没有解开,也吸引着无数的科学家去探寻。

29百科全书式的天才

小朋友,你们知道百科全书是什么吗?简单地说,就是把各类学科的各种知识集合在一起的书籍;而如果一个人被称作“百科全书”,那么就证明这个人具有多方面的学问和才华,不是一般人能够相比的。而在三百多年前的德国,就有这么一位被称作“百科全书”式的天才,他的名字叫莱布尼茨。

莱布尼茨1646年出生于德国的莱比锡,他父亲是莱比锡大学的哲学教授。从小开始,莱布尼茨就酷爱读书,还自学了几门外语,15岁的时候就进入了莱比锡大学,学习法学,同时还钻研哲学和数学。仅仅20岁,他就获得了博士学位和教授席位。然而他没有去当教授,而是投到了一位侯爵的门下,做起了法律和外交事务。

在日常事务的间隙,莱布尼茨继续进行着数学的研究。他曾被派往法国巴黎出使4年,在这4年中,他在巴黎认识了许多数学家和科学家,并研读了许多法国着名数学家的着作。在这段时间里,他发现了微积分的基本原理,从而确立了微积分的基本内容。有意思的是,英国科学家牛顿几乎是在此同时也发现了微积分原理,所以历史上把牛顿和莱布尼茨一起看做是微积分的发现者。

在此期间,莱布尼茨还被派到过伦敦出使。在那里,他结识了许多科学家,更加深刻地研究数学,并取得了很多成果,还被选为伦敦皇家学会会员。后来,他又被巴黎科学院选为院士。再后来他到德国的柏林工作,还在那里创办了柏林科学院并出任第一任院长。一身兼任欧洲三个最重要城市的科学院的院长或院士,可见莱布尼茨当时的威望之高,贡献之大。

莱布尼茨对数学的贡献尤其是巨大的。在数学上,有两个互相对立的领域:连续数学和离散数学,而莱布尼茨是数学史上为数不多的在这两方面都达到了最高水平的人。

莱布尼茨是杰出的数学家、物理学家、哲学家、法学家、历史学家、语言学家和地质学家。他在数学、逻辑学、力学、光学、航海学和计算机方面都做了重要的工作。所以,他才被称为“百科全书式的天才”。

30一个迷人的猜想

数学家陈景润钻研哥德巴赫猜想的故事,小朋友们或许都已经听说过了,但是你们知道,哥德巴赫猜想到底是怎么回事吗?

哥德巴赫是一位生活在两百年前的德国外交官,他非常喜欢研究数学,并和当时着名的大数学家欧拉是好朋友。他俩常常在通信的时候探讨数学问题。

同类推荐
  • 名家寓言(语文新课标课外必读第十一辑)

    名家寓言(语文新课标课外必读第十一辑)

    本书通过名家寓言,使读者探寻到真理的原生轨迹,领悟人类开启真理之门的智慧过程。
  • 尼尔斯骑鹅旅行记

    尼尔斯骑鹅旅行记

    这是一套献给孩子们的书。一如它的名字“阅读一小步·成长一大步”,在孩子们开始求知的成长旅程时,一套适合他们课外阅读的好书无疑为他们的人生……
  • 青少年必听语文之谜的故事(启迪青少年的语文故事集)

    青少年必听语文之谜的故事(启迪青少年的语文故事集)

    本丛书重视语文的基础知识训练,选编了常用词语、好词好句、古文名句解读,谚语、歇后语集萃,还有语文趣味故事、语文之谜以及语文大家的故事等等,目的是使中小学生在快乐的阅读中逐步提高语文知识,增加文学素养,为将来走出社会自立人生打下坚实的基础。
  • 成长路上的红绿灯(指导学生心理健康的经典故事)

    成长路上的红绿灯(指导学生心理健康的经典故事)

    每个人都在梦想着成功,但每个人心中的成功都不一样,是鲜花和掌声,是众人羡慕的眼神,还是存折上不断累积的财富?其实,无论是哪一种成功,真正需要的都是一种健康的心理。有了健康的心理才是成功的前提与保证,在人的一生中,中学是极其重要的一个阶段,心理健康对以后的健康成长非常重要。
  • 考生们最需要的精准记忆书

    考生们最需要的精准记忆书

    在日本排名第一的伊藤考试培训学校,有人从60岁后开始司法考试学习,每天记诵海量法规条文;有人从公司退休后参加学校的短期培训,并且一次通过成功率只有2%的高难度考试。这些奇迹的创造者、“考试之神”伊藤校长首次公开其独创的记忆法,揭示高速记忆的终极秘密。现在,无论你是参加升学、证照还是公职考试,都可以依循“伊藤记忆术”备考,你会发现提高10倍记忆力一点也不难。
热门推荐
  • 霸汉第二卷

    霸汉第二卷

    无赖少年林涉出身神秘,从小混迹于市井之中,一身痞气却满腹经纶,至情至性,智深若海。偶涉武道以天纵之资无师而成绝世高手,凭就超凡的智慧和胆识自乱世之中脱颖而出。在万般劫难之后,恰逢赤眉绿林之乱,乃聚小城之兵,以奇迹般的速度在乱世中崛起。
  • 上错竹马嫁对郎

    上错竹马嫁对郎

    女追男隔层纱?战荳荳想说:呸!为毛她从小就追着夏致屁股后头跑,幼稚童年花样少女青春年华都耗光了,还在“青梅竹马”这四个字上原地踏步?怎么说她也是上得了厅堂,下得了厨房,进得了闺房,打得过流氓的美少女战士……等等等等,一定是因为在她追爱的道路上,还有夏非寒这么一颗巨大的绊脚石存在——嘿,不就是小叔子嘛,怕什么,待嫂嫂我先收了你,再去寻我的本命郎君!想要成为我嫂嫂?夏非寒果断:滚!无貌无才无内在、无耻无赖无下限的“三无”系少女,妄图上演逆袭高富帅的戏码?想进夏家大门,就得过得了我这一关!
  • 凤指点江山

    凤指点江山

    冰封美男,不救是不是太可惜?手贱后的结果是被人“恩将仇报”压身调戏。“要清我体内余寒,必须两人脱掉衣服人体互暖……”豆腐吃上瘾?果断劈掌压倒,美男却几分享受:“女上男下,你喜欢?”……她是雇佣翘楚,一朝穿越,废材变奇葩,乾坤欲颠。九窍心开,身世惊天。修炼之途,步步噬血,步步惊华。九天之上,她傲笑;滚滚红尘,只求一心相照。他霸道:黄泉碧落,你只能是我的女人;他深情:为你一生无妻又何妨……谁说腹黑女不可以偶尔幽默,谁说强悍的女人就不需要包养?轻快女强文,女主求各界盆友果断掉坑温抚!
  • 王阳明:人生即修行

    王阳明:人生即修行

    本书是一部以王阳明的心学形成历程为主线的人物传记,将他的生平、心学以及现代励志概念结合起来,更深层次地、更独特性地介绍王阳明其人其学。这不是一部简单的传记,它深入浅出,幽默有趣,是有关王阳明的著述中不可多得的一部精品。
  • 神秘现象(自然瞭望书坊)

    神秘现象(自然瞭望书坊)

    每一朵花,都是一个春天,盛开馥郁芬芳;每一粒沙,都是一个世界,搭建小小天堂;每一颗心,都是一盏灯光,把地球村点亮!借助图书为你的生活添一丝色彩。大自然美丽而神奇,无论是广阔的天空,还是浩瀚的海洋,无论是遥远的地球两极,还足近在身边熟悉的土地,总有那么一些现代科学努力探索却又无法清楚解释的未知事物和神秘现象。这些扑朔迷离的谜团既令人惊奇,又引人深思,勾起人们探索的兴致。
  • 铁胆勇士(第二次世界大战史丛书)

    铁胆勇士(第二次世界大战史丛书)

    本书撷取了二战英雄中最具代表性的人物,力求展现他们不同时期、不同历史阶段独具特色的性格特征、丰富的内心世界和多彩的感情生活,描绘了他们超凡的军事天才,精湛的指挥艺术和令人热血沸腾的战争经历,浓墨重彩地颂扬了他们在历次重大事件中以正义战胜邪恶的铮铮铁骨。
  • 绝色之赌场皇后

    绝色之赌场皇后

    片段一:“小子,我说,”一个穿着乞丐装,头上盖着一顶打满补丁的人吊儿郎当的走到他的面前,那人生的唇红齿白,皮肤白皙靓丽,吹弹可破,明明就是一个女人,却装出来一种酷毙似的男人的口气,“你就陪大爷我玩一局怎么样?”“玩就玩,谁怕谁啊!”他撇了撇嘴,“不过,我可从来不喜欢用金钱下赌注啊。”“好!”那人兴致勃勃的一抬脚,将自己的靴子架到长凳上,“本大爷也不喜欢!你想用什么?”“我要是赢了,你就嫁给我,怎么样?”“你.”片段二:“去,把皇后娘娘给朕找来!”尹孝君怀抱着一名美丽的女子,非常温柔的对这个女子看了一眼,却忽然怒发冲冠,冲着旁边垂首侍立的太监宫女们狠狠的吼着,“要是找不到她回来你们都别想要脑袋!”“找到娘娘怎么劝他啊…”一个老太监赶忙迎上去,扑通一下跪到了地上,脸上还不住的渗下冷汗来。“告诉她,就说是朕的母后和爱妃都想要和她玩牌了,再不回来,朕就不再让她去赌场鬼混!”喜欢的请收藏,推荐.....谢谢~~撒花~~~~本文到最后还是入V了,莺感到实在对不起大家,但是,入V也是莺的一种谋生方式,希望亲们体谅一下莺!拍砖头的,可以轻一些么?(*^__^*)嘻嘻……,仍然支持莺的,莺会一直在文里等你们......此文入V后,每日的更新字数将在6000-7000字左右(特殊情况例外),希望亲们监督!!!莺再次表示一下莺滴抱歉,对不起,对不起,对不起~~~~~~同志们:新文清穿事务所爆笑登场!非一般搞笑、非典型穿越,无尽精彩,尽在新文:清穿事务所!作品链接:推荐好友长歌的文文:恶女落落戏江湖,NP,非一般搞笑哦~~~(*^__^*)嘻嘻……,推荐才女姐姐的文文:红颜白发:群:76704975!
  • 重生之杀死公主

    重生之杀死公主

    在重生回到过去之前,如果你还有三天的时间留在阳世,都能让人活的更加潇洒,你打算做些什么?安阳公主比较倒霉,第三次等等。安阳公主重生的时候,她在自己的灵堂上,也许你还需要第二次,发现了一个秘密……,不是每一次的重生。发现自己还能够以魂魄的姿态在阳间先逗留三日
  • 重生之血狱女王

    重生之血狱女王

    这是一苦大深仇懦弱女配重生变强加复仇的故事。前世,浑浑噩噩,苟且偷生,却还是死于非命;重回十岁,红衣妖娆,明媚如火,她只求逆天改命,傲立于世人仰望之顶峰,让那害她之人得到千倍万倍的痛苦!……原以为冷心冷情,不会再信任任何人,然而前世记忆入梦来,那一双深蓝色的眼睛,唤醒心底最深沉的眷恋。“小狼,跟我走好不好?”好!鲜血染红的大地,是绝望的深渊,她从地狱深处走来,无数的生命自她手中逝去,无数的生命因她而活!“众人欺我、恨我、害我、咒我,逼我入此血狱绝境,我偏不服,定要让血狱绝境成为人人求而不得的仙灵之境!”红衣妖娆的少女怒极而笑,如同盛放在血色地狱中最绝美的血莲,危险却引入沉迷。银发的少年右手搭上她的肩,深蓝色的眼睛里只有她一人的存在:“你想做什么都好!”
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。