登陆注册
3235200000003

第3章 1用砂粒填满宇宙(2)

为什么不承认呢?理由很简单:阿基米德预先在直尺上作了一个记号P,使直尺实际上具备有刻度的功能。这是一个不能容许的“犯规”动作。因为古希腊人规定:在尺规作图法中,直尺上不能有任何刻度,而且直尺与圆规都只准许使用有限次。

阿基米德失败了。但他的解法表明,仅仅在直尺上作一个记号,马上就可以走出这座数学迷宫。数学家们想:能不能先不在直尺上作记号,而在实际作图的过程中,逐步把这个点给找出来呢……

古希腊数学家全都失败了。2000多年来,这个问题激动了一代又一代的数学家,成为一个举世闻名的数学难题。笛卡儿、牛顿等许许多多最优秀的数学家,也都曾拿起直尺圆规,用这个难题测试过自己的智力……

无数的人都失败了。2000多年里,从初学几何的少年到天才的数学大师,谁也不能只用直尺和圆规将一个任意角三等分!一次接一次的失败,使得后来的人们变得审慎起来。渐渐地,人们心中生发出一个巨大问号:三等分一个任意角,是不是一定能用直尺与圆规作出来呢?如果这个题目根本无法由尺规作出,硬要用直尺与圆规去尝试,岂不是白费气力?

以后,数学家们开始了新的探索。因为,谁要是能从理论上予以证明:三等分任意角是无法由尺规作出的,那么,他也就解决了这个着名的数学难题。

1837年,数学家们终于赢得了胜利。法国数学家闻脱兹尔宣布:只准许使用直尺与圆规,想三等分一个任意角是根本不可能的!

这样,他率先走出了这座困惑了无数人的数学迷宫,了结了这桩长达2000多年的数学悬案。

8化圆为方问题

古希腊数学家苛刻地限制几何作图工具,规定画几何图形时,只准许使用直尺和圆规,于是,从一些本来很简单的几何作图题中,产生了一批着名的数学难题。除了前面讲过的三等分角问题和立方倍积问题之外,还有一个举世闻名的几何作图难题,叫做化圆为方问题。

据说,最先研究这个问题的人,是一个叫安拉克萨哥拉的古希腊学者。

安拉克萨哥拉生活在公元前5世纪,对数学和哲学都有一定的贡献。有一次,他对别人说:“太阳并不是一尊神,而是一个像希腊那样大的火球。”结果被他的仇人抓住把柄,说他亵读神灵,给抓进了牢房。

为了打发寂寞无聊的铁窗生涯,安拉克萨哥拉专心致志地思考过这样一个数学问题:怎样作出一个正方形,才能使它的面积与某个已知圆的面积相等?这就是化圆为方问题。

当然,安拉克萨哥拉没能解决这个问题。但他也不必为此感到羞愧,因为在他以后的2400多年里,许许多多比他更加优秀的数学家,也都未能解决这个问题。

有人说,在西方数学史上,几乎每一个称得上是数学家的人,都曾被化圆为方问题所吸引过。几乎在每一年里,都有数学家欣喜若狂地宣称:我解决了化圆为方问题!可是不久,人们就发现,在他们的作图过程中,不是在这里就是在那里有着一点小小的,但却是无法改正的错误,随之爆发出一阵阵善意的笑声。

化圆为方问题看上去这样容易,却使那么多的数学家都束手无策,真是不可思议!

年复一年,有关化圆为方的论文雪片似地飞向各国的科学院,多得叫科学家们无法审读。1775年,法国巴黎科学院还专门召开了一次会议,讨论这些论文给科学院正常工作造成的“麻烦”,会议通过了一项决议,决定不再审读有关化圆为方问题的论文。

然而,审读也罢,不审读也罢,化圆为方问题以其特有的魅力,依旧吸引着成千上万的人。它不仅吸引了众多的数学家,也让众多的数学爱好者为之神魂颠倒。15世纪时,连欧洲最着名的艺术大师达·芬奇,也曾拿起直尺与圆规,尝试解答过这个问题。

达·芬奇的作图方法很有趣。他首先动手做一个圆柱体,让这个圆柱体的高恰好等于底面圆半径r的一半,底面那个圆的面积是πr2。然后,达·芬奇将这个圆柱体在纸上滚动一周,在纸上得到一个矩形,这个矩形的长是2πr,宽是r/2,面积是πr2,正好等于圆柱底面圆的面积。

经过上面这一步,达·芬奇已经将圆“化”为一个矩形,接下来,只要再将这个矩形改画成一个与它面积相等的正方形,就可以达到“化圆为方”的目的。

达·芬奇解决了化圆为方问题吗?没有,因为他除了使用直尺和圆规之外,还让一个圆柱体在纸上滚来滚去。在尺规作图法中,这显然是一个不能容许的“犯规”动作。

与其他的两个几何作图难题一样,化圆为方问题也不能由尺规作图法完成。这个结论是德国数学家林德曼于1882年宣布的。

林德曼是怎样得出这样一个结论的呢?说起来,还与大家熟悉的圆周率π有关呢。

假设已知圆的半径为r,它的面积就是πr2;如果要作的那个正方形边长是X,它的面积就是X2。要使这两个图形的面积相等,必须有。

X2=πr2

即X=πr。

于是,能不能化圆为方,就归结为能不能用尺规作出一条像πr那样长的线段来。

数学家们已经证明:如果π是一个有理数,像πr这样长的线段肯定能由尺规作图法画出来;如果π是一个“超越数”,那么,这样的线段就肯定不能由尺规作图法画出来。

林德曼的伟大功绩,恰恰就在于他最先证明了π是一个超越数,从而最先确认了化圆为方问题是不能由尺规作图法解决的。

三大几何作图难题让人类苦苦思索了2000多年,研究这些数学难题有什么意义呢?

有人说,如果把数学比作是一块瓜田,那么,一个数学难题,就像是瓜叶下偶尔显露出来的一节瓜藤,它的周围都被瓜叶遮盖了,不知道还有多长的藤,也不知道还有多少颗瓜。但是,抓住了这节瓜藤,就有可能拽出更长的藤,拽出一连串的数学成果来。

数学难题的本身,往往并没有什么了不起。但是,要想解决它,就必须发明更普遍、更强有力的数学方法来,于是推动着人们去寻觅新的数学手段。例如,通过深入研究三大几何作图难题,开创了对圆锥曲线的研究,发现了尺规作图的判别准则,后来又有代数数和群论的方程论若干部分的发展,这些,都对数学发展产生了巨大的影响。

9中国剩余定理

古时候,我国有一部很重要的数学着作,叫《孙子算经》。书中的许多古算题,如“物不知数”问题、“鸡兔同笼”问题等等,都编得饶有情趣,1000多年来,一直在国内外广为流传。其中,尤以物不知数问题最为着名。

物不知数问题的大意是:“有一堆物体,不知道它的数目。如果每3个一数,最后会剩下2个;每5个一数,最后会剩3个;每7个一数,最后会剩下2个。求这堆物体的数目。”

这是一个不定方程问题,答案有无穷多组。按照现代解不定方程的一般步骤,解答起来是比较麻烦的。而若按照我国古代人民发明的一种算法,解答起来就简单得出奇。有人将这种奇妙的算法编成了一首歌谣:

三人同行七十稀,五树梅花廿一枝,

七子团圆正半月,除百零五便得知。

歌谣里隐含着70、21、15、105这4个数。只要记住这4个数,算出物不知数问题的答案就轻而易举了。尤其可贵的是,这种奇妙的算法具有普遍的意义,只要是同一类型的题目,都可以用这种方法去解答。

《孙子算经》最先详细介绍了这种奇妙的算法。书中说:凡是每3个一数最后剩下1个,就取70;每5个一数最后剩1个,就取21;每7个一数最后剩下1个,就取15。把它们加起来,如果得数比106大,就减去105。最后求出的数就是所有答案中最小的一个。

在物不知数问题里,每3个一数最后剩2,应该取2个70;每5个一数最后剩3,应该取3个21;每7个一数最后剩2,应该取2个15。由于2×70+3×21+2×15等于233,比106大,应该减去105;相减后得128,仍比106大,应该再减去105,得23。瞧,只需寥寥几步,我们就算出了题目的答案。

这种奇妙的算法有许多有趣的名称,如“鬼谷算”、“韩信大点兵”、“秦王暗点兵”等等,并被编成许多有趣的数学故事。它于12世纪末就流传到了欧洲国家。

可是,13世纪下半叶,我国数学家秦九韶遇到了一个与物不知数问题很相似的题目,却不能用这种奇妙的算法来解答。

秦九韶遇到的题目叫“余米推数”问题,在数学史上也很名。它有一种有趣的表述形式。

一天夜里,一群盗贼洗劫了一家米店,放在店堂里的3箩米几乎被席卷一空。第二天,官府派人勘查了现场,发现3个箩一样大,中间那个箩里还剩下14合米,而两边的箩里只剩下1合米了。

盗贼偷走了多少米呢?店主不记得每个萝里装了多少米,只记得它们装得一样多。

后来,行窃的3个盗贼都被抓住了。可是,他们也不知道偷了多少米。那天晚上,店堂里漆黑一团,盗贼甲摸到了一个马勺,用它从左边那个箩里舀米;盗贼乙摸到一个木鞋,用它从中间那个箩里舀米;盗贼丙摸到一个漆碗,用它从右边那个箩里舀米。盗贼们不记得舀了多少次,只记得每次都正好舀满,舀完最后一次后,箩里剩下的米都已不够再舀一次了。

在米店里,人们找到马勺、木鞋和漆碗,发现马勺一次能舀19合米,木鞋一次能舀17合米,而漆碗一次只能舀12合米。问米店共被窃走多少米,3个盗贼各盗窃了多少米?

为什么说余米推数问题与物不知数问题很相似呢?如果把米店被窃走的米数看作是一堆物体,这个题目实际上就是:

有一堆物体,不知道它的数目。如果每19个一数,最后剩下1个,每17个一数,最后剩14个,每12个一数,最后剩下1个。求这堆物体的数目。

秦九韶想,既然这两个题目很相似,那么,它们的解法也应该很相似。“鬼谷算”解答不了余米推数问题,说明它还不够完善,于是他深入探索了古代算法的奥秘,经过苦心钻研,终于在古代算法的基础上,创造出一种更普遍、更强有力的奇妙算法。

这种新算法也就是驰名世界的“大衍求一术”,它是我国古代数学里最有独创性的成就之一。国外直到19世纪,才由大数学家高斯发现同样的定理。因此,这个定理也就被人叫做“中国剩余定理”。

秦九韶也因此获得了不朽的声誉。西方着名数学史专家萨顿,对秦九韶创造性的工作给予了极高的评价,称赞秦九韶是“他的民族、他的时代以至一切时期的最伟大的数学家之一”。

10数学怎样跌进“黑洞”

我们来作一个有趣的数字游戏:请你随手写出一个三位数(要求三位数字不完全相同),然后按照数字从大到小的顺序,把三位数字重新排列,得到一个新数。接下来,再把所得的数的数字顺序颠倒一下,又得到一个新数。把两个新数的差作为一个新的三位数,再重复上述的步骤。继续不停地重复下去,你会得到什么样的结果呢?

例如323,第一个新数是332,第二个新数是是233,它们的差是099(注意以0开头的数,也得看成是一个三位数);接下来,990-099=891;981-189=792;972-279=693;963-369=594;954-459=495;954-459=495……

这种不断重复同一操作的过程,在计算机上被称为“迭代”。有趣的是,经过几次迭代之后,三位数最后都会停在495这个数上。

那么对于四位数,是不是也会出现这种情况呢?结果是肯定的,最后都会停在6174这个数上。它仿佛是数的“黑洞”,任何数字不完全相同的四位数,经过上述的“重排”和“求差”运算之后,都会跌进这个“黑洞”——6174,再也出不来了。

前苏联作家高基莫夫在其所着的《数学的敏感》一书中,曾把它列作“没有揭开的秘密”。

有时候,“黑洞”并不仅只有一个数,而是有好几个数,像走马灯一样兜圈子,又仿佛孙悟空跌进了如来佛的手掌心。

例如,对于五位数,已经发现了两个“圈”,它们分别是{63954,61974,82962,75933}与{62964,71973,83952,74943}。有兴趣的读者不妨自己验证一下。

11破碎砝码的妙用

一个商人不慎将一个重40磅的砝码跌落在地面上碎成4块,恰巧每块都是整数磅,后来他又意外发现,可以用这4块碎片做成可以称1到40磅的任意整数磅的重物的新砝码。请你猜一猜,这4块碎片的重量各是多少?

这就是着名的德·梅齐里亚克的砝码问题。这位法国数学家采用“迂回进击”的战术,使问题得到解决。

他是这样演绎的:

首先说明一个结论:如果有一系列砝码,把它们适当地分放在天平的两个托盘上,能称出1到n的所有整数磅重物(这时这些砝码重量的和也一定为n磅)。另设有一块砝码,它的重量为m磅(m=2n+1),那么原来所有的砝码再加砝码m所组成的砝码组便能称出从1到3n+1的所有整数磅的重物。

因为,原砝码组可称出重量1到n的所有整数磅重物。而原砝码组与重量为m磅的砝码可以秤n+1到2n+1磅的所有整数磅重物。

由此可判定这4块砝码的重量:

第一块砝码取m1=1(磅)

第二块砝码取m2=2×1+1=3(磅)

第三块砝码取m3=2(1+3)+1=9(磅)

第四块砝码取m4=2(1+3+9)+1=27(磅)

用这4块砝码可秤从1到(1+3+9+27)=40磅间的任何一个整数磅重物。

12你能算出哪一天是星期几吗

如果你要想知道历史上一些重要日子,或是未来随便哪一天是星期几,不翻日历,能计算出来吗?

根据历法原理,按照下面的公式计算,就可以知道某年、某月、某日是星期几了。

这个公式是:

S=x-1+x-14-x-1100+x-1400+C。

这里x是公元的年数,C是从这一年的元旦算到这天为止(连这一天也在内)的日数。x-14表示为x-14的整数部分;在计算S时,三个分数式只要商数的整数部分,余数略去不计,再把其它几项依次加减,就可得到S。

求出S以后,用7除;如果恰能除尽,这一天一定是星期日;若余数是1,那么这一天是星期一;余数是2,这一天就是星期二,依此类推。

例1:1921年7月1日,中国共产党在上海成立。你可知道1921年7月1日是星期几?

按上面的公式,可得:

S=1921-1+1921-14-1921-1100+1921-1400+(31+28+31+30+31+30+1)=1920+480-19+4+182=2567。

2567÷7=366……5。

所以1921年7月1日是星期五。

例2:1949年10月1日是伟大的中华人民共和国成立的日子,这一天是星期几?

按上面公式计算,可以知道:

S=1949-1+1949-14-1949-1100+1949-1400+(31+28+31+30+31+30+31+30+1)=1948+487-19+4+274=2694。

2694÷7=384……6。

所以1949年10月1日是星期六。

例3:1984年元旦是星期几?

按上面公式可得:

同类推荐
  • 新概念作文十六年纪念版精华范本(才子卷)

    新概念作文十六年纪念版精华范本(才子卷)

    近几年中学语文教育也在大幅度改革,许多人认为高考作文的命题和新概念作文大赛复赛题已经相当接近,这是非常好的发展趋势。正如王蒙所说,新概念由旧概念来。倡导新概念不是为了标新立异,而是想提高青年学子对作文的兴趣,告诉他们只有真实的、表达真情实感的、富有创造性和想象力的文章才是好文章。
  • 教你打乒乓球(学生球类运动学习手册)

    教你打乒乓球(学生球类运动学习手册)

    球类体育运动的起源很早,中国在2300年前,即春秋战国时代,就有了足球运动,当时的足球叫“蹴鞠,至汉代,蹴鞠运动发展到了鼎盛时期,有了专业足球队、竞赛规则,还设立了裁判员。汉代,我国的踢毽子运动也十分盛行,至清末,参加的人越来越多,人们不仅用踢毽子锻炼身体,而且还把它和书画、下棋、放风筝、养花鸟、唱二黄等相提并论,可见对其的宠爱程度。
  • 绿光(语文新课标课外必读第七辑)

    绿光(语文新课标课外必读第七辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 列那狐的故事(语文新课标课外必读第十二辑)

    列那狐的故事(语文新课标课外必读第十二辑)

    语文新课标指定了中小学生的阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高广大学生的阅读写作能力,培养语文素养,促进终身学习等具有深远的意义。
  • 求知力学的故事(中华成语故事全集)

    求知力学的故事(中华成语故事全集)

    成语是汉语词汇宝库里的璀璨明珠。它是长期以来人们在相沿习用的过程中,形成的形式简洁面意义精辟的固定短语。它结可严谨,表现性强,具有庄重典雅的书面语色彩,历来为人们喜闻乐用。不论讲话或作文,准确恰当地镶嵌或点缀一些成语。本书注重知识性、可读性和完整性,每个成语都辟有释义、出处、故事三大部分。编排顺序按笔画多少排列,既方便读者阅读,又方便读者查阅。本书既可作为中小学生学习成语的工具书,又适合不同层次读者作为故事阅读,具有广泛的适用性。
热门推荐
  • 重生农家小媳妇

    重生农家小媳妇

    小媳妇儿孟朵重生到十三岁那年。依旧是人人惦记的能掐出水的童养媳,却不再是任人宰割的小绵羊。帮助大伯发家致富,督促小叔进学高中,教养小姑温柔识礼!坑害拐骗的,拍飞!算计房田的,抽死!她的愿望是一家人开开心心地过平淡而富足的生活,奈何桃花朵朵开,一众人物粉墨登场。一不要命,二不要脸,狗皮膏药似的黏在身上,活神仙都没辙。最缠人的爷们霸气十足,对外放话:谁惹自个媳妇儿,一个字,抽!【男主语录】媳妇儿,我给你笑一个,别生气了,行吗?媳妇儿,大伯甩脸子给我瞧,咋办?媳妇儿,小叔竟然敢打我的脸,毁容了怎么办?媳妇儿,小姑子的婚事你可满意?
  • 幽默随心所欲

    幽默随心所欲

    本书献给每一位渴望幸福与成功的年轻人。
  • 方法总比问题多

    方法总比问题多

    造就一流员工的职场培训读本。优秀的人找方法,平庸的人找借口。没有解决不了的问题,只有不会解决问题的人。没有做不到,只有想不到。思路决定出路,方法总比问题多。阅读本书,让你成为方法高手,做问题的终结者。
  • 赐婚之王府的当家王妃

    赐婚之王府的当家王妃

    她一直都凭着自己的努力,到了最后换来的却是一场空,身边的人早已离自己而去,对于这个世界自己真的已经没有了一丝留恋……却不想一朝穿越古代,拥有了亲人的疼爱,她十分珍惜,奈何命运似乎不愿意看她拥有幸福,为了救父亲,她不得不嫁给他。洞房花烛夜,她头盖喜帕,烛火闪烁,他语气清冷:“不要以为你嫁入了靖安王府你就能得到什么,你最好给本王安安分分的,否则本王会让你后悔做了这一切。”说完他甩袖离开。她唇边露出冷笑,终究逃脱不了命运么?这一时她会好好地守护好自己的东西,绝对不允许任何人破坏,这一世,她绝不会心软。。。。。。
  • 三国之问鼎天下

    三国之问鼎天下

    重生汉末,逆天改命。在乱世中生存,只有强大,更强大,比所有敌人都强大!“碰到比你强大的呢?”“干!”带甲十万,跨蹈汉南,却要不战而降?不,这样的结局我不接受!即便不能挟天子而令诸侯,我也要据荆州以图天下!
  • 妖孽乞丐

    妖孽乞丐

    前世,她是苏氏企业的执行总裁,亦是黑道上所有人闻之色变的风月阁主事---苏少,手下有着世界排名前七的杀手,横扫整个黑道为人阴狠残暴,冷血无情就在21岁生日时,被自己的亲叔叔暗算,死于一场爆炸当她的灵魂得以穿越,依附在一个不满十三岁的乞丐身上,她的人生又将发生怎样翻天覆地的变化?这世,她是明月王朝一名枉死的乞丐地牢重生,右手被废,被江湖上赫赫有名的医圣--无涯子收为关门弟子,一身医术尽数传与她重生后的她,波澜不惊,淡漠冷血,风华绝代,眼神凌厉如浩瀚深渊扑朔迷离的身世,冷漠淡然的处事态度,体内那股足以毁天灭地的能量让她成为两国皇室的头号公敌却在不经意间揭晓她的真实身份——皓月国的七公主!体内拥有半尺神功的天下主宰者!这世的她,又将带给这片大陆怎样的腥风血雨?!人物简介:女主苏格:男装时清冷卓然,一身白衣飘渺如谪仙,三千发丝仅用一根银白的发带束于脑后,俊美邪佞,浑身上下散发着拒人于千里之外的冷漠,手执一把银白长剑,煮酒天下女装时妖娆媚惑,额头一簇盛开的殷红紫薇更显她神圣不可侵犯,恍如九天玄女,眉目清冷,疏离淡漠柳君陌:面容邪肆俊美,一双眸子若千年不化的寒冰,冰寒刺骨。身怀绝世武功,创立天下第一杀手阁只为找寻心目中的无忧,与苏格相遇在武林大会前一晚的树林里,两人见面总是打斗居多,以为两人是死对头,后知道苏格的身份,才知道她就是自己苦苦找寻的那个人。。。墨枫:神秘莫测的明月国二皇子,总是一身黑衣加身,遮住容貌身形,武功深不可测,是天下第一情报组织飞鸟阁的阁主,也是青龙山庄的效力对象,为了维持两国的友好,与其说是居住,不如说是从小就被监禁在皓月,是个真正的武学天才,与苏格相遇在武林大会,被擂台上的那抹白色身影吸引墨离:皓月国温雅清润的五皇子,面容也是生得俊美无双,文武全才,从小便体弱多病,被送去凌霄阁救治,后来成为凌霄阁阁主,旧疾也被医圣治好,与苏格相识在他十五岁的时候,是苏格的亲生哥哥,后被苏格逼迫着坐上龙位,一统天下!云清:天山掌门无极最小的关门弟子,亦是明月的四皇子,真名墨阳,一袭红袍加身,长相妖娆绝色,是只倾城的狐狸,与苏格相遇在武林大会,前晚,被苏格一招击败,后在武林大会又被苏格所救无涯子:消失江湖三十年的医圣,一身轻功出神入化,医术亦是,是苏格的师父
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 调皮王妃闹王府

    调皮王妃闹王府

    ,姐姐的选择不只有你,为毛要嫁你?等等,三王府小三各式各样,呼之即来,嫌叶琴歌太过文静是吧,小样。任其玩闹?这条件不错,步雅佳,现代米虫,一朝穿越成丞相之女叶琴歌。什么?叶琴歌年轻貌美,居然是被未婚夫三王爷南宫射和妹妹联手坠崖的?好你个南宫射,考虑考虑,且看她重生之后,东山再起,卷土重来滔滔之势三王爷如何抵挡!一番没有烟火的回合之后,孔雀南宫射,动心了吧,嘿嘿,找小三玩可是她人生的一大乐趣
  • 宫斗之谋妃无情

    宫斗之谋妃无情

    尘世之中她因一根白玉菊花簪跨世而来,命运多踹却从未言弃,当他们历经磨难后终携手并肩,却不想抵不过的却是命运的捉弄。“博尔济吉特.叶洛,朕从未想过你如此狠毒!”他的目光里闪现出一抹不易察觉的痛心疾首。“皇上没有听过最毒妇人心吗。”她一脸的决绝,冷冷的开口。他眸中是深深一痛,为什么?为什么到如今她都不肯低头,难道她不知,只要她愿意低头解释,不管真相如何,他都愿意冒天下大不护她一生吗?“你走,朕再也不想见到你。”一切繁华逝去,而她终究没能等到那年最美的菊花开。叶洛曾说:悲剧于她而言是另一种完美。
  • 穿越之寻到红楼去爱你

    穿越之寻到红楼去爱你

    他叫水溶,一个让人无比郁闷的名字,只因为老爹是超级红楼迷。抗议多次无效,只能认命,却不曾想这个名字却是开启他命运的钥匙。什么?那个从天而降的女子居然就是袅娜的林家黛玉!与他相伴一生的佳侣?等等!书中的林黛玉不是与贾宝玉情投意合吗?怎么会.~"砰!”一声枪响,黛玉如同风中花瓣一般飘落在他怀中。“不!”水溶绝望地嘶喊着,痛苦不可言状!老天既然要自己爱上黛玉,为何要还要这般残忍的将她带走!“我要回去了.记得.我.”黛玉眼睛合上的一瞬,水溶的心崩溃了.~这就是红楼的世界吗?那个该死的北静王爷居然是皇上的情敌!还好自己聪明,轻易摆脱!玉儿!为何你从没告诉我本该锦衣玉食的你竟然如此凄凉;为何你从没告诉我天杀的贾家不止谋了钱财,还要谋人!玉儿!从今以后,定不再让你受得丝毫委屈,为了你,我寻到红楼!--------------------------------------------------------------------------------------------------推荐宛颐新文《红楼之碧水盈玉》无穿越,无玄幻,单纯的一篇红楼同人,白水般淡淡的感觉。水玉一直是主角,这次也不例外。一张地图,牵出了野心,三分天下,鹿死谁手?慈爱的祖母为何渐行渐远,亲情的温暖如何竟昙花一现,骨肉血亲抵不过万丈权柄谋算,最初的呵护已淡淡消散。只,那一双眼眸为何还会在梦中出现?沉静的心波澜不宁,却是心头萦绕已久不曾?原以为自此陌路,不料却再次相见…宫廷深深深几许,调包计,调进的是谁?成全了谁?兜兜转转,真真假假,水玉缘自有天定…-------------------------------------------------------------------------------------------------宛颐的第一部红楼作品《穿越之溶心傲玉》欢迎大家去踩踩~~~~~