登陆注册
2877700000008

第8章 模块一车身钣金基础(8)

圆柱面可看成内切正棱柱的底面边数无限增多而形成。圆柱面上各素线互相平行,因此,圆柱面展开也可用平行线法,并按直棱柱面展开方法作图。直圆柱的展开图为一矩形,底边的长度等于圆柱管的圆周长nD,高为圆柱管的高度。

(5)用平行线法作已知主、俯视图斜口直圆柱的展开图

(1)分析:

斜口直圆柱管是直圆柱管被正垂面斜截而形成的。截平面与圆柱面的截交线为椭圆线,圆柱面上素线长短不一,由于圆柱轴线垂直H面,各素线的正面投影为实长。画展开图时,底圆展成直线,过直线上各等分点作垂线(素线),并截取素线上相应长度得其端点,并连成光滑曲线。

(2)作图

a.把俯视图圆周等分为12等分(等分越多越准确),过各等点找出主视图上相应素线lV、2V……b.将圆周展成直线,截取相应12等分弧长,近似作图以弦长代替弧长in=i2、nm=23……得等分点I、n、m、过各点作垂线,并在垂线上截取相应素线等长的线段ia=Va\B=2’b’……(或过主视图上点—犫z……引水平线与相应素线相交),得各素线端点A犅……c.过各素线的端点A、B、C……顺序连成光滑曲线,即得所求,如图3—25(c)所示。应当指出用弦长代替弧长作出的展开图,其底边长度缩小,产生一定误差,是一种近似作图。由于钣金制件有的要求不很准确,用这种方法可达到要求,作图简便,所以较为常用。有时为了把误差控制在一定范围内,要提高制件精确度,可增加圆周等分数,缩小素线之间的误差。若还需更为准确作图,应先计算出圆周长犇的尺寸作直线,再进行等分,这样作出展开图较为准确。

(6)用平行线法作已知两端斜口直圆柱的主、俯视图的展开图

(1)分析:

如图3—26所示,从图中可知两端斜口圆柱的轴线是正平线,圆柱面素线正面投影为实长,但它们均不与端面(底面)垂直。

(2)作图:

a.在主视图的对称位置作N—N线(正垂面N的积聚投影)垂直轴线,并用换面法求得截面圆的实形,在该圆周上等分(2等分)得点1、b.过等分点作斜圆面素线11’、22’……得素线端点犪、c.将正截面圆周展成直线(即N—N延长线),用12(代替12弧)在该直线截出点I、n……d.过各点I、H、m……作NN线的垂线,由主视图的两端斜口素线端点平行线,分别与相应垂线的交点……e.把点犃犅……及点犃1犅1……顺序连成曲线,即得所求。

七、放射线展开法

若钣金制件的侧面是由棱锥面或圆锥面所围成时,则这种结构的表面也属于可展表面。由于棱锥面和圆锥面上的棱线和素线相交于锥顶,若沿制件表面的棱线或素线剪开,然后把各棱线或各素线绕着锥顶摊平在一个平面上,则所得表面展开的各棱线或各素线依然汇交于一点,作出的展开图上各棱线或各素线也汇交于一点。这种利用棱线或素线汇交于一点的作图方法,称为放射线法。

1.放射线展开法原理

放射线展开法的原理是:可以把锥体表面上任意相邻的两条素线(或棱线)及其所夹的底边线,看成是一个近似的平面三角形。当各小三角形的底边也足够短的时候,则小三角形面积的和就等于原来形体的表面积。若把所有的小三角形一次铺开成一平面,原来的形体表面也就被展开了。作展开图的关键是确定这些素线(或棱线)的长度和相邻素线(或棱线)间的夹角,或者利用两条素线(或棱线)所夹的底边线实长来确定,通过三角形底边线两点间距离间接达到确定其夹角的目的。

2.放射线展开法的应用

(1)用放射线展开法作已知主、俯视图棱锥管的展开图

(1)分析:

从图中可知正四棱锥的侧面是由四个全等的等腰三角形所围成,左右侧面是正垂面,前、后侧面为侧垂面,在主、俯视图找不到实形。画展开图依次作出四个等腰三角形的实形。底面正四边形边是水平线,水平投影为实长;四个侧棱相等并汇交于一点S,是一般位置线。主、俯视图找不到实长,因此,求作其展开图,关键求得棱线的实长。

(2)作图

a.用旋转法或直角三角形法求棱线的实长。用SC旋转得SQCi投影或SC为底边作直角三角形得SGCG,SGCG=棱线实长。

b.以S为圆心,棱线长SQCi=SQCQ为半径画圆弧,并以底边的实长在圆弧上截取点。

c.把各点B、C……顺序连线,并分别与S点连线,得四个全等的等腰三角形,为正四棱锥管展开图。

(1)分析:

斜口直四棱锥管可看成直四棱锥被正垂面截切而成,其侧面是由两个等腰梯形和两个梯形所围成,画展开图即依次画出这四个梯形的实形。

(2)作图:

a.按图3—27方法作完整四棱锥展开图(底面对应边相等)。

b.在主视图上定出斜口面与棱线相交点/(/)、/(//),引水平线与斜线SC:i或S0C0相交,得四个梯形面上棱线的实长(C0巧、C0……)。

(3)用放射线展开法作已知主、俯视图斜漏斗的展开图

(1)分析:

如图3—29(a)、(b)所示,斜漏斗是平口斜四棱锥。从图中看出左右侧面是两个等腰梯形,前后侧面是两个前后对称相等梯形。作展开图应依次作出这四个面的实形:即先作斜四棱锥展开图,然后,再截取各棱线的有效长度,即可作出其展开图。

(2)作图:

a.延长主、俯视图轮廓线,得斜四棱锥顶点S的投影Z、s。

b.底面四边的水平投影d为实长。由于对称关系,只需用旋转法求作棱线SA、SB的实长即可;若取In为接缝线(剪开hdOO为实长。

c.以S为顶点,分别用已知长依次作出ASIA、ASAB……d.求作棱线有效长度。

e.在SI上截取接缝线I在棱线SA上截取AD=ai木;在棱线SB上截取BC=bic’......

c.将所得各点n犇,c、m顺序连线,即得漏斗前半部展开图。后半部展开图形状与其相同。

(4)用放射线展开法作圆锥管的展开图

(1)分析:

圆锥素线汇交于锥顶,其锥面的展开图为扇形。扇形半径等于圆锥母线的长度兄扇形的圆弧长等于圆锥底圆的周长niW为底圆直径),扇形的角度a=180°i/i—。

圆锥面也可看成正棱锥面底面的边数无限增多而形成的。圆锥面的展开变成棱锥面的展开,即可用放射法作图。用这种方法作图虽有一定误差,但钣金制件在误差允许范围内可通过增加圆周等分数来解决。

(2)作图:

a.把俯视图的圆周分为十二等分,通过等分点在主视图上作出对应素线。

b.以顶点/为圆心,用圆锥(素线)为半径画圆弧,自点0开始用圆周弦长代替弧长,在圆弧上截取oi=oi,In=12……得点I、n……分别与/相连,得到圆锥面近似展开图(图中只标出一半)。

(5)用放射线展开法作已知主、俯视图斜口圆锥管的展开图(1)分析:

从图3—31中已知斜口圆锥管是圆锥被正垂面斜截去顶部而形成的。斜口形状为椭圆,正面投影积聚为一斜线。它的展开按完整圆锥展开成扇形后,再用有效素线实长在对应素线上截取各点,并连成光滑曲线,即得所求。

(2)作图:

a.按图3—31(c)所示方法画出完整圆锥面的展开图。

b.在俯视图的圆周上等分八等分点1、在主视图画出八条对应素线,得素线与斜口交点犪、用旋转法(过这些点引水平线与圆锥面最左素线/1,的交点)求出这些点在素线各自实际位置,即把同一条素线分为上、下两段实长。

a.以S为圆心,……为半径画弧,在展开图上与各自素线交点A、B……d.把点A、B、C……各点连成光滑曲线,即得斜口圆锥管展开图。

(6)用放射线展开法作上平口、下曲口圆锥管的展开图(图1—32)从主、俯视图可知,上平口与圆锥轴线垂直,在上平口以上部分为正圆锥面,平口的水平投影为实形(圆);下曲口为曲面,水平投影为曲线。作其展开图可分两步:

第一步,按方法,把上平口以上当成完整圆锥面展开成扇形。

第二步,把展开图上各素线延长,同时用旋转法在主视图上求得实体部分各素线有效实长后,在展开图上截取相应长度,得点A、B……并连成光滑曲线,即得所求。

(7)用放射线展开法作斜椭圆锥的展开图

(1)分析:

斜椭圆锥的正截面是椭圆,作其展开图时,可按图3—29所示斜棱锥来展开,由于斜椭圆锥面上的素线不等,应分别求出它们的实长。

(2)作图:

a.将俯视图上圆周分为12等分,并画出各素线的两面投影(图中前、后对称,只画前半部的投影)。

b.用旋转法求出各素线的实长/li,、/2i、/3i......

c.用素线以及底圆等分点之间的弦长作第一个ASOI,用同法依次作出其他的11个三角形。

d.把三角形底边各顶点顺序连成光滑曲线,得斜椭圆锥表面展开图。

(8)用放射线展开法作平口斜椭圆锥管展开图:

平口斜椭圆锥管可看成斜椭圆锥截切去锥顶部分而成,应先按图3—34所示方法求作完整斜椭圆锥表面展开图。用旋转法求得平口斜椭圆锥管各素线的有效长度,即以/为圆心,分别把所截部分的素线实长转到展开图上对应素线上,得各点并顺序连成光滑曲线,得所求。

3.放射线展开法小结放射线展开法是很重要的一种展开方法。它运用于所有锥体及锥截管件或构件的侧面展开,尽管锥体表面各种各样,但展开方法却大同小异,作法可归纳如下:

(1)在二视图中(或只在某一视图中)通过延长投影边等手段完成整个锥体的放样图。

(2)通过等分断面周长(或任意分割断面全长)的方法,作出各分点所对应的断面素线(包括棱锥侧棱以及侧面上过锥顶点的直线),将锥面分割成若干小三角形。

(3)应用求实长的方法(常用旋转法、直角三角形法),把所有不反映实长的素线,与作展开图有关的直线的实长一一不漏地求出来。

(4)以实长为准,利用交轨法(正锥体可用扇形法)作出整个锥体侧面的展开图,同时作出全部放射线。

(5)在整个锥体侧面展开图的基础上,以放射线为骨架,以有关实长为准,再画出锥体截切部分所在曲线的展开曲线,完成全部展开图。

八、三角形展开法

对于可展曲面来说,因为整个曲面是可展的,因此每一部分也一定是可展的。有些钣金件的表面是由平面、柱面和锥面的全体或部分曲面等组合而成的任意形状表面,全部是由各种可展表面的部分表面组合而成,因而也一定是可展的。

在钣金制件上有的表面(平面或曲面)不宜或不可能用平行线或放射线法直接求作展开图时,常把这种表面划分成若干三角形平面或三角形曲面,然后求得三角形各边的实长,再由已求三角形边长依次拼画出各个三角形,就能作出制件的表面展开图。这种应用三角形作图原理求作展开图方法,称为三角形法或三角线法。

1.三角形法展开原理

若形体的表面是由若干平面与曲面、曲面与曲面、平面与平面构成,那么就可以把表面划分成若干小三角形,然后把这些小三角形按原来的相互位置和顺序不遗漏地铺平开来,则形体表面就被展开了。

三角形法虽然能用于任何形体,但由于这种办法比较繁琐,所以只有在必要时(三角形法比用平行线法或放射线法简单时)才采用它。如当形体表面无平行的素线或棱线,不适用平行线展开法,又无集中所有素线或棱线的顶点,不适于用放射线法展开时,才采用三角形法作展开图。

2.三角形展开法的应用

(1)用三角形展开法作上、下方口错位漏斗的展开图

从图3—35中可知上、下口均为正方形,但位置偏错45°,整个侧面由两对四个等腰三角形所围成。其上、下口是水平面,水平投影的正方形为实形,各边a、b为实长,八条侧棱相等,是一般位置直线。若以In为接缝边,则展开图应有九个三角形(首尾为直角三角形)。由于对称形,所以只需求作其中三个三角形的实形即可。接缝线In为正平线,正面投影1’2’为实长,等腰三角形的腰长犿用旋转法求得。

作图步骤:

(1)用旋转法求作三角形中一条腰长的实长,如以C为圆心,过点d画圆弧求得CQ1,C&1为腰长犿的实长。

(2)分别用a、b、m、为边长,依次作出各个相邻三角形,即得其展开图。

由于梯形高和底边垂直,所以IH垂直犪/2,根据直角三角形已知两个直角边长(即a/2和便可作出的原理,斜边犿为等腰梯形两腰的实长,所以不需用旋转法求腰长的实长。

用三角形展开法作汽车引擎盖的展开图汽车引擎盖是一块左右对称、上下两端形状不同的曲面,如图3—36所示,这样的曲面只能用三角形法展开。把曲面分成若干个小三角形,求出各小三角形的实长,就能作出展开图。

作图步骤:

(1)将主视图中大端的曲线分成若干段,各份可以相等也可以不等,为了作图的方便一般作等分,由于曲面左右对称,所以只要画一半即可。

(2)把小端的半圆曲线也分成相应的份数。得1’、2’、3’…、7’各点。把各对应点连成直线,再对角相连,即得到许多小三角形。

(3)按投影关系在俯视图中作出各连线的投影,这样把曲面分成许多小三角形,根据主、俯两投影直角三角形法求出各线的实长。

(4)以7—7线作为基准线(图形左右对称),向两边用实长线作出各三角形的实形得展开图。

3.三角形展开法小结

三角形展开法又叫回归线展开法,因为它略去了形体原来相邻素线间的平行、相交、异面关系,而用新的三角线来代替,因此对曲面来说是一种近似的展开法,这种方法不仅可用来展开可展曲面,还可以作不可展曲面的近似展开图。三角形展开构件表面的3个步骤为:

(1)在放样图中将形体表面正确分割成若干小三角形。

(2)求所有小三角形各边的实长。

(3)以放样图中各小三角形的相邻位置为依据,用已知的或求出的实长为半径,通过交轨法,依次展开所有小三角形,最后将所得的交点视构件具体情况用曲线或用折线连接起来,由此得到所需构件的展开图。

九、三种展开方法展开各种可展表面的比较平行线展开法、放射线展开法和三角形展开法是制作钣金件的展开图的基本展开方法,当拿到一个钣金件的视图时,首先应正确地对构件进行形体分析,对构件表面的棱线或可利用素线进行分析,抓住构件表面的主要特点,在上述三种方法中选取可行和最简便的一种。

这就必须懂得三种展开方法的关系及其应用范围。

1.三种展开方法之间的关系

从展开实例中可以看出,三角线展开法能展开一切可展形体的表面,平行线展开法仅限于展开素线相互平行的形体表面,放射线展开法则只适于展开素线交汇于一点的形体表面。这说明了平行线展开法和放射线展开法只是三角形展开法的两种特殊情况。

2.三种展开方法的适用范围当构件表面由相互平行的素线和棱线所组成,而且这些素线和棱线均平行于某一投影面,在该投影中反映实长时,比较适合用平行线展开法。

当构件表面的素线和棱线或其延长线能够交于一点,即构件表面为锥体时,适合用放射线展开法。

同类推荐
  • 指导学生心理健康的经典故事:悉心呵护心灵健康

    指导学生心理健康的经典故事:悉心呵护心灵健康

    每个人都在梦想着成功,但每个人心中的成功都不一样,是鲜花和掌声,是众人羡慕的眼神,还是存折上不断累积的财富?其实,无论是哪一种成功,真正需要的都是一种健康的心理。有了健康的心理才是成功的前提与保证,在人的一生中,中学是极其重要的一个阶段,心理健康对以后的健康成长非常重要。
  • 机灵超级班课堂(青少年挖掘大脑智商潜能训练集)

    机灵超级班课堂(青少年挖掘大脑智商潜能训练集)

    潜能是人类原本存在但尚未被开发与利用的能力,是潜在的能量。根据能量守恒定律,能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而转化和转移过程中,能的总量保持不变。
  • 激励青少年科学探索的故事(启发青少年的科学故事集)

    激励青少年科学探索的故事(启发青少年的科学故事集)

    本书是献给尊重科学、学习科学,创造科学的青少年的一份礼物。过去培根说:“知识就是力量。”今天我们说:“科学就是力量。”科学是智慧的历程和结晶。从人类期盼的最高精神境界讲,朝朝暮暮沿着知识的历程,逐步通向科学的光辉圣殿,是许多有志于自我发展的青少年晶莹透明的梦想!
  • 培根论文集(语文新课标课外必读第二辑)

    培根论文集(语文新课标课外必读第二辑)

    《培根论文集》萃取了培根一生著述的精华,内容包括培根对人与自己、人与社会、人与他人以及人与自然等各方面关系的看法。从“论真理”、“论死亡”等篇章中,可以看到一个热情于哲学的培根。从“论权位”、“论野心”等篇章中,可以看到一个热衷于政治、深涪官场运作的培根。从“论爱情”、“论友情”等篇章中,可以看到一个富有生活情趣的培根。从“论逆境”、“论残疾”等篇章中,可以看到一个自强不息的培根。从“论狡猾”、“论言谈”等篇章中,可以看到一个工于心计、老于世故的培根。
  • 中国古代寓言(语文新课标课外必读第五辑)

    中国古代寓言(语文新课标课外必读第五辑)

    本书所收我国古代寓言,按照思想内容,可以概括成三类。第一类是以生动活泼的比喻讲出深刻的哲理;第二类是具有“劝善惩恶”性质的;第三类是具有讽刺性的。 本书所收我国古代寓言,按照思想内容,可以概括成三类。第一类是以生动活泼的比喻讲出深刻的哲理;第二类是具有“劝善惩恶”性质的;第三类是具有讽刺性的。
热门推荐
  • 无敌大小姐

    无敌大小姐

    当现代阴狠毒辣,手段极多的火家大小姐火无情,穿越到一个好色如命,花痴草包大小姐身上,会发生怎样的化学反应?火无情一醒过来就发现,自己竟然在众目睽睽之下上演脱衣秀。周围还有一群围观者。这一发现,让她极为不爽。刚刚穿好衣服,便看到一个声称是自家老头的老不死气势汹汹的跑来问罪。刚上来,就要打她。这还得了?她火无情从生自死,都是王者。敢动她的人,都在和阎王喝茶。于是,她一怒之下,打了老爹。众人皆道:火家小姐阴狠毒辣,竟然连老爹都不放在眼里。就这样,她的罪名又多了一条。蛇蝎美人。穿越后,火无情的麻烦不断。第一天,打了爹。第二天,毁了姐姐的容。第三天,骂了二娘。第四天,当众轻薄了天下第一公子。第五天,火家贴出招亲启事:但凡愿意娶火家大小姐者,皆可去火府报名。来者不限。不怕死,不想活的,欢迎前来。警示:但凡来此,生死皆与火家无关。若有残病者火家一律不负法律责任。本以为无人敢到,岂料是桃花朵朵。美男个个很妖娆一号美人:火无炎。火家大少爷。为人不清楚,手段不清楚。容貌不清楚。唯一清楚的是,他有钱。有多多的钱。火无情语录:钱是好东西。娶了。(此美男,由美瞳掩饰不了你眼神的空洞领养。)火老爷一气之下,昏了过去。家门不幸,家门不幸啊。二号美人:竹清月。江湖人称天上神仙,地上无月。大国师一枚。美得惊天动地。火无情语录:美人好,尤其是自带嫁妆又会预测未来的美人,娶了。(此美男,由东de琳琳领养)三号美人:轩辕子玉。当朝七皇子,游历四国。一张可爱无敌的脸。单纯至极。火无情语录:可爱的孩子好,可爱又乖巧的孩子更好。可爱乖巧又不用给钱的孩子,娶了。(此美男,由刘千绮领养)皇帝听闻,两眼一抹黑。他的儿啊。怎么就这么不争气呢。四号美人:天下第一美男。性格不详,籍贯不详。火无情语录:谜一样的美人,她喜欢。每天都有新鲜感。娶了。(此美男,由告别的爱情li领养。)五号美人:天下第一名伶。火无情语录:解风情的美男,如果没钱花把他卖了都不用调教。娶了。(此美男由伊眸领养。)六号美男:解忧楼楼主。相貌不详,身世不详。爱好杀人。火无情语录:凶恶的美人,她喜欢。娶了。(此美男由陈铭铭领养)七号美男:琴圣。貌如谪仙,琴音杀人。冷清眸子中,百转千回,说尽风流。(此美男由伊眸领养)夜杀:天下第一杀手。(此美男由静寂之夜领养)
  • 新妻来袭,老公请小心

    新妻来袭,老公请小心

    他是百里家二公子贺少,她是蓝家千金闺秀,阴差阳错,她成了他的妻。不愿受束缚,他对她百般冷落,而她只冷眼看他在外潇洒风流。婆婆冷眼相待,大伯不时骚.扰,小姑经常找茬,情敌频频登门,她一一应付自如。直到某天,她被爆出怀孕消息,他大怒,连夜不息折磨她,看着她腿.间染红,他冷笑嘲讽:“蓝倾喻,这就是你背着我偷腥的代价!”其后,他集结两家长辈,把她驱逐出门。婆家不要,娘家不能回,她走逃无路,最终孤身沦落天涯。.数年后,某男的订婚现场,惊现神秘宝宝:“爹地,婚姻是坟墓,我专程远道而来解救你!”男人一脸黑线:“小鬼,我不是你爹地。”“吃完想赖账?如果不是你,我岂会从妈咪肚子里面蹦出来?”.“爹地,请签字!”某宝戳着清单空白处。男人冰眸扫向单子,上面注明:孕育费+教学费+生活费+心灵创伤费=一亿他摸摸下巴:“我可以给你钱,但有个条件。”“什么?”“叫你妈咪回家!”
  • 司马懿吃三国·珍藏版大全集(共5册)

    司马懿吃三国·珍藏版大全集(共5册)

    司马懿潜伏曹操身边几十年,任由曹操差遣,他装弱、装傻、装病、装瘫,甚至装死来麻痹敌人、对手、上司、兄弟、朋友乃至家人……公元246年,深夜,探子密奏:“回乡养病的司马懿确实新纳了一个宠妾,整日沉溺酒色,他结发老妻得知后大闹一场。老家伙不仅不听,反而大骂她‘长得丑也就罢了,还出来丢人!’这些天,他老婆儿子都绝食相逼呢。”曹爽一脸狐疑:“再探!我就不相信老狐狸会真的罢手归隐。”公元248年十二月初九,司马府内一片沉哀,药味刺鼻。病床上的司马懿脸色蜡黄,嘴角流涎,连一口粥都喝不进去了。一官吏强压住内心的狂喜,急奔进曹爽家:“大将军,大喜了!司马老儿就剩一口气,活不了几天!”
  • 妖冥药尊

    妖冥药尊

    【简介•恶趣味版】某人的人生准则有三厚——一要恶趣味浓厚,而要毒舌功深厚,三要脸皮够厚。恶趣味是一种情调,做人没情调怎么行?毒舌是一种消遣,她不过是闲了点。厚脸皮是一种制胜法宝,你脸皮厚,她会比你更厚颜无耻。窥伺追杀?度量大,那是美德,但美过头就成了缺德!冥王之位?她又不是捡垃圾的,干嘛要去收拾烂摊子?看一代药尊如何登堂损人,出战揍人,上台阴人,干坏事顺便留下一个美妙的背影【简介•评论版】某炮灰评:此女少奸巨滑,金玉其外败絮其中,回眸一笑,让你瞬间惊艳,瞬间崩溃。此女乃坑货一名,低调起来惊天地泣鬼神。此女乃瘟神一尊,一笑鸡飞狗跳,二笑天地失色,三笑神崩地裂,四笑……通通都给本尊去冥界报道!综合上述,此女为不定时炸弹一枚,极其危险。温馨提示:心脏病患者,半只脚踏入精神病院大门者,纯纯小白者,天生当炮灰之命者,切记勿进!【简介•正剧版】冥洛邪是谁?冥界名扬四海的幽冥药尊,年纪轻轻以一首炼药之术位居一方尊者,离冥王之位仅一步之遥。一朝异变,她进入时空隧道,踏入异世。一双金瞳,她又“成为”妖界来客,被当做珍稀妖灵人人窥伺,生死之间搏命一赌,她一跃落入人人惊恐的雾谷。雾谷之中,银发妖娆,绝代风华,他说:入了雾谷,那便是我的东西。她却回答:真不好意思,本尊从来没有成为他人所有物的癖好!救了她又如何?她临走前来能跟他说一声已经是很给面子了!重出人界,却听废物妖灵名遍天下,她笑,一唤幽冥之火,幽冥药尊惊世倾覆天下!丹药难寻?不好意思,她从来都是把这东西当糖吃。此药剧毒?非常抱歉,她百毒不侵,万药免疫,你当她这药尊是吃素的不成?灵力废柴?那叫低调懂不懂?冥火操纵,亡灵召唤,封印一破,她就是横着走也没人敢拦她!但如果要是招惹到她了……伤她一人,她便亡他一千!而且姐姐疼,某人的挂名姐姐对着喽啰们就是一吼:你妹的别在老娘面前怪里怪气,少在这里恶心人,老娘的妹妹怎么了?你才废物,你全家都是废物!万年不进阶!然后收起彪悍,某女子对着某人温柔地说道:小洛别怕,要是有人敢欺负你,姐姐我就帮你欺负回去!某人暗中竖起一个大拇指,很无良地暗中捣鬼。……
  • 重生之曼妙医师

    重生之曼妙医师

    她,凌思,中医界的权威,医学界天才。她,苏流瑾,X省军区苏家的大小姐,怯懦自卑的私生女。生母不知去向,生父对她不闻不问,在所有大人的眼中,她是个透明的存在,是同辈小孩欺负嘲笑的对象。一朝梦醒,她成了她,她不是她。在S省,所有人都知道一句话:你可以在玉皇大帝身上戳几个透明的窟窿,但是千万别得罪江家的人。他,江辰逸,S省省委书记最心爱的外孙,财阀江家的少爷,商界的怪才,霸道任性,没有他不能做的,只有他不想坐的。片段一:俊美的男人被五花大绑的绑在床上,脸色潮红,低低喘息。“说,还抽不抽?”恨恨的看着惹火的小女人,终于挫败的垂下眼睛:”在你面前在也不抽了。”…“不是说不抽了吗?”他一脸坦然:“我只答应在你面前不抽。”片段二:裹着浴衣出来,他邪笑着揽她:“是在勾引我吗?”门铃过后,一个小小傻傻的小鬼:“我来找爸爸。”她回过头笑得意味深深:“什么时候造的孽?”片段三:打开门,露出半边脸的男人,在床上和一个女人……脏死了,一甩门走掉。“为什么一直不见我?”“我有洁癖,我不喜欢别人用过的东西。”男人无辜的说:“可是我没有被用过啊!”一拍桌子,“那,那个女人是怎么回事?”某个人泪水连连,“那是我堂哥啊…”《重生之官家娇女》霜瓦流化好友的文哦,希望大家支持!《形婚》伯爵的胡须好友的文,多多支持哦!好友蘑菇殿下的文,希望大家戳几下,谢谢哦!
  • 左手曾国藩,右手胡雪岩

    左手曾国藩,右手胡雪岩

    乱世出英雄,晚清的朝野风声鹤唳。外有列强虎视眈眈,内有太平天国揭竿而起。有两位名人却恰逢此时出生。一个是以“立德、立功、立言”三不朽的曾国藩,另一个就是红顶商人胡雪岩。曾国藩,一介乡间秀才,最后官封一等勇毅侯;胡雪岩,一个钱庄伙计,终成富甲天下的“红顶商人”。一个游刃官场,经历宦海风波,几度沉浮;一个靠势借力,八方招财。
  • 探索太阳系(自然瞭望书坊)

    探索太阳系(自然瞭望书坊)

    人类是宇宙演化的杰作,宇宙是神秘莫测的存在。当宇宙的精灵与莫测的神秘结合在一起时,便碰撞出无数精彩的篇章。人类对宇宙的解读和探秘跨越了千年,宇宙的面貌也越来越清晰地展现在人类面前。
  • 每天给心灵放个假:夏

    每天给心灵放个假:夏

    生活也许不能每天都是艳阳高照,人生也许不是每天都能如意顺畅,但是我们完全可以:每天给生活一缕清风,每天给心灵一次放假,每天给生命一帖处方,每天给人生一个惊喜,每天给自己一片阳光……
  • 灵武魔神

    灵武魔神

    孤儿穿越到异世,打破桎梏,灵武双修,不断成长,捉灵宠,拥美人,上天入地,与神争锋。
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿