登陆注册
2877700000008

第8章 模块一车身钣金基础(8)

圆柱面可看成内切正棱柱的底面边数无限增多而形成。圆柱面上各素线互相平行,因此,圆柱面展开也可用平行线法,并按直棱柱面展开方法作图。直圆柱的展开图为一矩形,底边的长度等于圆柱管的圆周长nD,高为圆柱管的高度。

(5)用平行线法作已知主、俯视图斜口直圆柱的展开图

(1)分析:

斜口直圆柱管是直圆柱管被正垂面斜截而形成的。截平面与圆柱面的截交线为椭圆线,圆柱面上素线长短不一,由于圆柱轴线垂直H面,各素线的正面投影为实长。画展开图时,底圆展成直线,过直线上各等分点作垂线(素线),并截取素线上相应长度得其端点,并连成光滑曲线。

(2)作图

a.把俯视图圆周等分为12等分(等分越多越准确),过各等点找出主视图上相应素线lV、2V……b.将圆周展成直线,截取相应12等分弧长,近似作图以弦长代替弧长in=i2、nm=23……得等分点I、n、m、过各点作垂线,并在垂线上截取相应素线等长的线段ia=Va\B=2’b’……(或过主视图上点—犫z……引水平线与相应素线相交),得各素线端点A犅……c.过各素线的端点A、B、C……顺序连成光滑曲线,即得所求,如图3—25(c)所示。应当指出用弦长代替弧长作出的展开图,其底边长度缩小,产生一定误差,是一种近似作图。由于钣金制件有的要求不很准确,用这种方法可达到要求,作图简便,所以较为常用。有时为了把误差控制在一定范围内,要提高制件精确度,可增加圆周等分数,缩小素线之间的误差。若还需更为准确作图,应先计算出圆周长犇的尺寸作直线,再进行等分,这样作出展开图较为准确。

(6)用平行线法作已知两端斜口直圆柱的主、俯视图的展开图

(1)分析:

如图3—26所示,从图中可知两端斜口圆柱的轴线是正平线,圆柱面素线正面投影为实长,但它们均不与端面(底面)垂直。

(2)作图:

a.在主视图的对称位置作N—N线(正垂面N的积聚投影)垂直轴线,并用换面法求得截面圆的实形,在该圆周上等分(2等分)得点1、b.过等分点作斜圆面素线11’、22’……得素线端点犪、c.将正截面圆周展成直线(即N—N延长线),用12(代替12弧)在该直线截出点I、n……d.过各点I、H、m……作NN线的垂线,由主视图的两端斜口素线端点平行线,分别与相应垂线的交点……e.把点犃犅……及点犃1犅1……顺序连成曲线,即得所求。

七、放射线展开法

若钣金制件的侧面是由棱锥面或圆锥面所围成时,则这种结构的表面也属于可展表面。由于棱锥面和圆锥面上的棱线和素线相交于锥顶,若沿制件表面的棱线或素线剪开,然后把各棱线或各素线绕着锥顶摊平在一个平面上,则所得表面展开的各棱线或各素线依然汇交于一点,作出的展开图上各棱线或各素线也汇交于一点。这种利用棱线或素线汇交于一点的作图方法,称为放射线法。

1.放射线展开法原理

放射线展开法的原理是:可以把锥体表面上任意相邻的两条素线(或棱线)及其所夹的底边线,看成是一个近似的平面三角形。当各小三角形的底边也足够短的时候,则小三角形面积的和就等于原来形体的表面积。若把所有的小三角形一次铺开成一平面,原来的形体表面也就被展开了。作展开图的关键是确定这些素线(或棱线)的长度和相邻素线(或棱线)间的夹角,或者利用两条素线(或棱线)所夹的底边线实长来确定,通过三角形底边线两点间距离间接达到确定其夹角的目的。

2.放射线展开法的应用

(1)用放射线展开法作已知主、俯视图棱锥管的展开图

(1)分析:

从图中可知正四棱锥的侧面是由四个全等的等腰三角形所围成,左右侧面是正垂面,前、后侧面为侧垂面,在主、俯视图找不到实形。画展开图依次作出四个等腰三角形的实形。底面正四边形边是水平线,水平投影为实长;四个侧棱相等并汇交于一点S,是一般位置线。主、俯视图找不到实长,因此,求作其展开图,关键求得棱线的实长。

(2)作图

a.用旋转法或直角三角形法求棱线的实长。用SC旋转得SQCi投影或SC为底边作直角三角形得SGCG,SGCG=棱线实长。

b.以S为圆心,棱线长SQCi=SQCQ为半径画圆弧,并以底边的实长在圆弧上截取点。

c.把各点B、C……顺序连线,并分别与S点连线,得四个全等的等腰三角形,为正四棱锥管展开图。

(1)分析:

斜口直四棱锥管可看成直四棱锥被正垂面截切而成,其侧面是由两个等腰梯形和两个梯形所围成,画展开图即依次画出这四个梯形的实形。

(2)作图:

a.按图3—27方法作完整四棱锥展开图(底面对应边相等)。

b.在主视图上定出斜口面与棱线相交点/(/)、/(//),引水平线与斜线SC:i或S0C0相交,得四个梯形面上棱线的实长(C0巧、C0……)。

(3)用放射线展开法作已知主、俯视图斜漏斗的展开图

(1)分析:

如图3—29(a)、(b)所示,斜漏斗是平口斜四棱锥。从图中看出左右侧面是两个等腰梯形,前后侧面是两个前后对称相等梯形。作展开图应依次作出这四个面的实形:即先作斜四棱锥展开图,然后,再截取各棱线的有效长度,即可作出其展开图。

(2)作图:

a.延长主、俯视图轮廓线,得斜四棱锥顶点S的投影Z、s。

b.底面四边的水平投影d为实长。由于对称关系,只需用旋转法求作棱线SA、SB的实长即可;若取In为接缝线(剪开hdOO为实长。

c.以S为顶点,分别用已知长依次作出ASIA、ASAB……d.求作棱线有效长度。

e.在SI上截取接缝线I在棱线SA上截取AD=ai木;在棱线SB上截取BC=bic’......

c.将所得各点n犇,c、m顺序连线,即得漏斗前半部展开图。后半部展开图形状与其相同。

(4)用放射线展开法作圆锥管的展开图

(1)分析:

圆锥素线汇交于锥顶,其锥面的展开图为扇形。扇形半径等于圆锥母线的长度兄扇形的圆弧长等于圆锥底圆的周长niW为底圆直径),扇形的角度a=180°i/i—。

圆锥面也可看成正棱锥面底面的边数无限增多而形成的。圆锥面的展开变成棱锥面的展开,即可用放射法作图。用这种方法作图虽有一定误差,但钣金制件在误差允许范围内可通过增加圆周等分数来解决。

(2)作图:

a.把俯视图的圆周分为十二等分,通过等分点在主视图上作出对应素线。

b.以顶点/为圆心,用圆锥(素线)为半径画圆弧,自点0开始用圆周弦长代替弧长,在圆弧上截取oi=oi,In=12……得点I、n……分别与/相连,得到圆锥面近似展开图(图中只标出一半)。

(5)用放射线展开法作已知主、俯视图斜口圆锥管的展开图(1)分析:

从图3—31中已知斜口圆锥管是圆锥被正垂面斜截去顶部而形成的。斜口形状为椭圆,正面投影积聚为一斜线。它的展开按完整圆锥展开成扇形后,再用有效素线实长在对应素线上截取各点,并连成光滑曲线,即得所求。

(2)作图:

a.按图3—31(c)所示方法画出完整圆锥面的展开图。

b.在俯视图的圆周上等分八等分点1、在主视图画出八条对应素线,得素线与斜口交点犪、用旋转法(过这些点引水平线与圆锥面最左素线/1,的交点)求出这些点在素线各自实际位置,即把同一条素线分为上、下两段实长。

a.以S为圆心,……为半径画弧,在展开图上与各自素线交点A、B……d.把点A、B、C……各点连成光滑曲线,即得斜口圆锥管展开图。

(6)用放射线展开法作上平口、下曲口圆锥管的展开图(图1—32)从主、俯视图可知,上平口与圆锥轴线垂直,在上平口以上部分为正圆锥面,平口的水平投影为实形(圆);下曲口为曲面,水平投影为曲线。作其展开图可分两步:

第一步,按方法,把上平口以上当成完整圆锥面展开成扇形。

第二步,把展开图上各素线延长,同时用旋转法在主视图上求得实体部分各素线有效实长后,在展开图上截取相应长度,得点A、B……并连成光滑曲线,即得所求。

(7)用放射线展开法作斜椭圆锥的展开图

(1)分析:

斜椭圆锥的正截面是椭圆,作其展开图时,可按图3—29所示斜棱锥来展开,由于斜椭圆锥面上的素线不等,应分别求出它们的实长。

(2)作图:

a.将俯视图上圆周分为12等分,并画出各素线的两面投影(图中前、后对称,只画前半部的投影)。

b.用旋转法求出各素线的实长/li,、/2i、/3i......

c.用素线以及底圆等分点之间的弦长作第一个ASOI,用同法依次作出其他的11个三角形。

d.把三角形底边各顶点顺序连成光滑曲线,得斜椭圆锥表面展开图。

(8)用放射线展开法作平口斜椭圆锥管展开图:

平口斜椭圆锥管可看成斜椭圆锥截切去锥顶部分而成,应先按图3—34所示方法求作完整斜椭圆锥表面展开图。用旋转法求得平口斜椭圆锥管各素线的有效长度,即以/为圆心,分别把所截部分的素线实长转到展开图上对应素线上,得各点并顺序连成光滑曲线,得所求。

3.放射线展开法小结放射线展开法是很重要的一种展开方法。它运用于所有锥体及锥截管件或构件的侧面展开,尽管锥体表面各种各样,但展开方法却大同小异,作法可归纳如下:

(1)在二视图中(或只在某一视图中)通过延长投影边等手段完成整个锥体的放样图。

(2)通过等分断面周长(或任意分割断面全长)的方法,作出各分点所对应的断面素线(包括棱锥侧棱以及侧面上过锥顶点的直线),将锥面分割成若干小三角形。

(3)应用求实长的方法(常用旋转法、直角三角形法),把所有不反映实长的素线,与作展开图有关的直线的实长一一不漏地求出来。

(4)以实长为准,利用交轨法(正锥体可用扇形法)作出整个锥体侧面的展开图,同时作出全部放射线。

(5)在整个锥体侧面展开图的基础上,以放射线为骨架,以有关实长为准,再画出锥体截切部分所在曲线的展开曲线,完成全部展开图。

八、三角形展开法

对于可展曲面来说,因为整个曲面是可展的,因此每一部分也一定是可展的。有些钣金件的表面是由平面、柱面和锥面的全体或部分曲面等组合而成的任意形状表面,全部是由各种可展表面的部分表面组合而成,因而也一定是可展的。

在钣金制件上有的表面(平面或曲面)不宜或不可能用平行线或放射线法直接求作展开图时,常把这种表面划分成若干三角形平面或三角形曲面,然后求得三角形各边的实长,再由已求三角形边长依次拼画出各个三角形,就能作出制件的表面展开图。这种应用三角形作图原理求作展开图方法,称为三角形法或三角线法。

1.三角形法展开原理

若形体的表面是由若干平面与曲面、曲面与曲面、平面与平面构成,那么就可以把表面划分成若干小三角形,然后把这些小三角形按原来的相互位置和顺序不遗漏地铺平开来,则形体表面就被展开了。

三角形法虽然能用于任何形体,但由于这种办法比较繁琐,所以只有在必要时(三角形法比用平行线法或放射线法简单时)才采用它。如当形体表面无平行的素线或棱线,不适用平行线展开法,又无集中所有素线或棱线的顶点,不适于用放射线法展开时,才采用三角形法作展开图。

2.三角形展开法的应用

(1)用三角形展开法作上、下方口错位漏斗的展开图

从图3—35中可知上、下口均为正方形,但位置偏错45°,整个侧面由两对四个等腰三角形所围成。其上、下口是水平面,水平投影的正方形为实形,各边a、b为实长,八条侧棱相等,是一般位置直线。若以In为接缝边,则展开图应有九个三角形(首尾为直角三角形)。由于对称形,所以只需求作其中三个三角形的实形即可。接缝线In为正平线,正面投影1’2’为实长,等腰三角形的腰长犿用旋转法求得。

作图步骤:

(1)用旋转法求作三角形中一条腰长的实长,如以C为圆心,过点d画圆弧求得CQ1,C&1为腰长犿的实长。

(2)分别用a、b、m、为边长,依次作出各个相邻三角形,即得其展开图。

由于梯形高和底边垂直,所以IH垂直犪/2,根据直角三角形已知两个直角边长(即a/2和便可作出的原理,斜边犿为等腰梯形两腰的实长,所以不需用旋转法求腰长的实长。

用三角形展开法作汽车引擎盖的展开图汽车引擎盖是一块左右对称、上下两端形状不同的曲面,如图3—36所示,这样的曲面只能用三角形法展开。把曲面分成若干个小三角形,求出各小三角形的实长,就能作出展开图。

作图步骤:

(1)将主视图中大端的曲线分成若干段,各份可以相等也可以不等,为了作图的方便一般作等分,由于曲面左右对称,所以只要画一半即可。

(2)把小端的半圆曲线也分成相应的份数。得1’、2’、3’…、7’各点。把各对应点连成直线,再对角相连,即得到许多小三角形。

(3)按投影关系在俯视图中作出各连线的投影,这样把曲面分成许多小三角形,根据主、俯两投影直角三角形法求出各线的实长。

(4)以7—7线作为基准线(图形左右对称),向两边用实长线作出各三角形的实形得展开图。

3.三角形展开法小结

三角形展开法又叫回归线展开法,因为它略去了形体原来相邻素线间的平行、相交、异面关系,而用新的三角线来代替,因此对曲面来说是一种近似的展开法,这种方法不仅可用来展开可展曲面,还可以作不可展曲面的近似展开图。三角形展开构件表面的3个步骤为:

(1)在放样图中将形体表面正确分割成若干小三角形。

(2)求所有小三角形各边的实长。

(3)以放样图中各小三角形的相邻位置为依据,用已知的或求出的实长为半径,通过交轨法,依次展开所有小三角形,最后将所得的交点视构件具体情况用曲线或用折线连接起来,由此得到所需构件的展开图。

九、三种展开方法展开各种可展表面的比较平行线展开法、放射线展开法和三角形展开法是制作钣金件的展开图的基本展开方法,当拿到一个钣金件的视图时,首先应正确地对构件进行形体分析,对构件表面的棱线或可利用素线进行分析,抓住构件表面的主要特点,在上述三种方法中选取可行和最简便的一种。

这就必须懂得三种展开方法的关系及其应用范围。

1.三种展开方法之间的关系

从展开实例中可以看出,三角线展开法能展开一切可展形体的表面,平行线展开法仅限于展开素线相互平行的形体表面,放射线展开法则只适于展开素线交汇于一点的形体表面。这说明了平行线展开法和放射线展开法只是三角形展开法的两种特殊情况。

2.三种展开方法的适用范围当构件表面由相互平行的素线和棱线所组成,而且这些素线和棱线均平行于某一投影面,在该投影中反映实长时,比较适合用平行线展开法。

当构件表面的素线和棱线或其延长线能够交于一点,即构件表面为锥体时,适合用放射线展开法。

同类推荐
  • 发明家的故事

    发明家的故事

    本书从军事、化工、机械、医药、生活等多个方面精选了古今中外有影响的发明创造的故事,并以清新流畅的文笔真实反映了世界各国各个历史时期的科学发明以及发明家艰辛而又传奇的发明经历。阅读这些故事,可以激励小读者刻苦学习的意志。
  • 成长路上的红绿灯(指导学生心理健康的经典故事)

    成长路上的红绿灯(指导学生心理健康的经典故事)

    每个人都在梦想着成功,但每个人心中的成功都不一样,是鲜花和掌声,是众人羡慕的眼神,还是存折上不断累积的财富?其实,无论是哪一种成功,真正需要的都是一种健康的心理。有了健康的心理才是成功的前提与保证,在人的一生中,中学是极其重要的一个阶段,心理健康对以后的健康成长非常重要。
  • 交通常识悦读

    交通常识悦读

    中小学生是祖国的未来和希望,他们的身心安全涉及千家万户,关系社会稳定。然而,近几年来,危及中小学生生命安全的意外事故和恶性案件时有发生,给家庭、学校和社会蒙上了阴影,令人痛惜和震惊。由此可见,中小学生安全知识及安全意识的普及和培养就显得尤为重要了。本书为中小学生普及一些交通方面的常识,让小读者们更好的了解一些交通方面的知识以及常识!
  • 钢琴入门100问

    钢琴入门100问

    这是一套提高青少年音乐素质的指导性丛书,全套书目前推出五个音乐类专业方向,全套体例以100个一问一答的形式深入浅出地讲解音乐专业知识,语言风格口语化,时尚化。本册为演艺技巧方向。
  • 教你学马术·轮滑(学生室内外运动学习手册)

    教你学马术·轮滑(学生室内外运动学习手册)

    体育运动是以身体练习为基本手段,以增强人的体质,促进人的全面发展,丰富社会文化生活和促进精神文明为目的一种有意识、有组织的社会活动。室内外体育运动内容丰富,种类繁多,主要项目有田径、球类、游泳、武术、登山、滑冰、举重、摔跤、自行车、摩托车等数十个类别。
热门推荐
  • 天魔逆仙

    天魔逆仙

    陆青云,一个平凡的少年,因为复仇而踏上修仙之路。他本是万中无一的天魔根拥有着,却阴错阳差,选择了仙魔同修。无意间,得到一龙凤玉,据说当龙魂凤魂苏醒之时,可以动乱八荒。筑基之境,凝结魔婴,据说魔婴九变,可以造就魔仙。神禁术,乃上古传承之禁术,据说神禁术大成之时,可以封印天地。虚族人族本同源,据说练就虚族分身,人虚同修,可以返璞归真,成就人王之境。当这些奇迹重叠在一个少年身上时,试问,这天地间还有什么,可以阻挡他的脚步?
  • 重生之我本彪悍

    重生之我本彪悍

    黎易倾重生了,重生到所有转折的开始,父母还未因为寻她而失踪,她也未因为被极品亲戚贩卖而迈上那条不归路,所有的一切都还没有开始。黎易倾是谁?她是一朵只可远观而不可亵玩的霸王花!1994年,那时年少,她的人生才刚开始。那是满路黄金的时代,也是属于黎易倾的时代!权势滔天?名利场只是游乐场,钱权势,你要哪个?打折出售!以力量为墙,表世界,权势相逐;里世界,强者为尊。重生的黎易倾悠然游走在中间的灰色地带,让那权势俯首,力量称臣!#¥¥#&&#本文纯属虚构,若有雷同巧合让道!个人欢乐所作,谢-绝-拍-砖!
  • 帝姑

    帝姑

    我是帝姑,皇帝的姑姑。不是亲姑姑,是姨表姑,一表三千里,再加上一个姨,可谓隔了六万八千里。※※※※※※※※※※※※※※※※※他是少年帝王,胸怀天下,坚定隐忍,冷情傲性。后宫佳丽三万,环肥燕瘦,珠玉在侧,独悬后位。他是当朝丞相,三代忠烈,仰首朝堂,岿然如山。犹记冷宫初见,清柳拂风,情劫难逃,终是沉沦。他是贴身护卫,面具覆颜,难窥真容,守她护她。也曾白马轻骑,一朝变故,千载轮回,此情堪怜。她是帝姑篱落,十载相守,不离不弃,教养少帝。帝姑深宫独处,面首数千,蓝颜过百,真心几许。是否,总也是在历尽伤害折磨后,才恍然心痛?是否,总也是在不经意的失去后,才惊然醒觉?江南地,他风采卓然,激荡的,是他的英姿,她的眷恋。那一日,她深陷囹圄,苍白的,是他的正气,她的痴恋。她笑:敛思,敛思,自此,你我是陌路。苦寒地,他深蓝色身影晃过,救回的,是她的命,失去的,是他的命。那一时,面具碎落成片,那记忆里的旧时容颜,原来,始终,未曾离开。他说:诗儿,我不悔,来生,你我还要相遇,我,还是你初见时的师兄。城楼上,她纵身一跃,成就的,是他的江山,她的解脱。那一刻,他明黄龙袍,晃动的,是他的难舍,她的心痛。他说:姑姑,我最想要的,不是这江山,而你,始终不懂。PS:1.某人很无牙的求收藏,求留言,求推荐,这些都是某人写文速度的动力!2.本文每日一更,更新时间一般是晚上。
  • 怪兽形影(走进科学)

    怪兽形影(走进科学)

    本文主要内容为尼斯湖怪兽、游荡的怪兽、热沃丹怪兽、密林猿类、加拿大水怪、两足怪物等。
  • 离婚后请好好爱自己

    离婚后请好好爱自己

    毕业的离愁弥漫在空中。浓郁地无法呼吸。刘杨将手放入女孩的长发,轻柔地由上至下。那发丝根根滑落,散发着纷繁的思绪。“不要走,告诉我,我们会是例外!”刘杨薄唇微启。“例外?”邹燕泪眼回望。“无论贫穷富贵,无论疾病健康,无论人事阻隔,我们永远在一起。”刘杨一字一顿,缓缓道来,话毕,泪从眼眶中滑落。“嗯,我们会是例外,我们不会屈服。”邹燕抿紧双唇郑重点头。他第一个月的工资是620元,他就掏出600元给了他的公主。之后他借口加班,30天没有回来,因为他只有20元了。他拿出电炉子,买了5包挂面,一瓶酱。这样吃了30天。他不觉得苦,一点都不觉得。想到他漂亮的小笨笨,他的心中就充满了力量。邹燕中餐配有水果,但她从来都没有吃过,永远都会攒下来,周一到周五,等他回来的时候,就有5个了。她问自己还可不可以为电影情节流泪,还能不能在寒风中等待那刚出笼的面包?不可以了,她不再会纯粹的笑,也不再可以痛快地哭,更不再有热情等待一些奇妙。燕,跟我回去,我们从头开始。邹燕看着面前这个“陌生”的男人。淡淡开口,字字千金。刘杨,我已经不再相信幸福了。相信是一种能力。可我…已经失去这种能力了。请跟随雀的脚步,看人世间褪色的誓言,咫尺天涯的陌路。美眉们,喜欢此文的话,就收藏下来鼓励我一下吧!首先在首页上方找到“会员注册”,只须30秒就可以得到一个注册名,是免费的!再到了作品页面下方点击“投票推荐”就可以投票了。旁边的“放入书架”就是收藏。收藏后其实看书会很方便,比每天在书海中找寻要快捷多了。每天登录会员后点击左边的“我的书架”你就可以马上看到作者的新章节了。而且一个免费的普通会员可以同时收藏50本书,真地很方便呦。作者在此真心地感谢每一个支持我的朋友!
  • 带队伍:不会带团队,你就只能干到死!

    带队伍:不会带团队,你就只能干到死!

    能否管理好团队,是决定一个职场人士能走多远的关键因素。作者全方位讲述如何建立领导力、完善制度、高效沟通、科学考核、提高执行力、做好时间管理等团队管理中的常见问题。他通过简洁有趣的描述,翔实动人的案例,告诉你应该如何建设和管理一个团队。内容简洁易懂,定位清晰明确,是中高层管理者提升管理水平的必读之书。
  • 傻子王爷无情妃

    傻子王爷无情妃

    一只毒蝎子,彻底断送了她年轻的生命!别人只知道,那个软弱没主见的女人被迫嫁给一个痴傻呆闷的七皇子。殊不知,她早已不再是“她”!面对痴傻只会憨笑的美男,她气愤难填!你傻,本美女就医好你,谁知医好后,遭到嫌弃,却换来一纸休书,气愤之下,她恨不得与他同归于尽……
  • 倾世宠妻

    倾世宠妻

    上辈子温柔和善,贤良淑德的司徒盈袖苦等自己的未婚夫十年,却在最后关头,被人陷害,锒铛入狱。为保清白,她从东元国百丈高的白塔上纵身一跳,惨死在众人面前。意外重生,捡回一条命的司徒盈袖表示:去他的贤良淑德、温柔和善!姐重生要做御姐!姐是女汉子姐自豪!但是重生的御姐女汉子立志走上人生巅峰,却总是被一只闷骚腹黑高冷禁欲的男神挡路肿么破?!司徒盈袖:姐急着去采花!麻烦请让让!某君斜睨她一眼:你采花?——你师父知道吗?……司徒盈袖:……总而言之,每一只闷骚腹黑高冷禁欲的男神存在,是因为还没有碰到一只令他破...
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 总有一天我们都会老去

    总有一天我们都会老去

    一个出苦大力以求草间存活的女子,在浮躁的多伦多过着浮躁的生活。在城市中寻找一个不再流浪的归宿,一场如游戏般的邂逅,两段难于举棋的交融。苦等一句曾经爱过,却换来是永不相见。爱是一种让你享受欢愉和痛苦的过程。