登陆注册
2379700000001

第1章 数学之谜(1)

古典难题的挑战——几何三大难题及其解决

位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。这延续了二千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。

1.三大难题的提出

实际中存在着各种各样的几何形状,曲和直是最基本的图形特征。相应地,人类最早会画的基本几何图形就是直线和圆。画直线就得使用一个边缘平直的工具,画圆就得使用一端固定而另一端能旋转的工具,这就产生了直尺和圆规。

古希腊人说的直尺,指的是没有刻度的直尺。他们在大量的画图经历中感觉到,似乎只用直尺、圆规这两种作图工具就能画出各种满足要求的几何图形,因而,古希腊人就规定,作图时只能有限次地使用直尺和圆规这两种工具来进行,并称之为尺规作图法。

漫长的作图实践,按尺规作图的要求,人们作出了大量符合给定条件的图形,即便一些较为复杂的作图问题,独具匠心地经过有限步骤也能作出来。到了大约公元前6~前4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题。

三等分角问题:将任一个给定的角三等分。

立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。

化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。

这就是著名的古代几何作图三大难题,它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。

2.貌似简单其实难

从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,二千多年来从事几何三大难题的研究颇不乏人。也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等。可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。

其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。可是谁也想不出解决问题的办法。三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出?

数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能,标准是什么,界限在哪里?可这依然是十分困难的问题。

3.高斯的发现

历史的车轮转到了17世纪,法国数学家笛卡尔创立了解析几何,为判断尺规作图可能性提供了从代数上进行研究的手段,解决三大难题有了新的转机。

最先突破的是德国数学家高斯。他于1777年4月30日出生于不伦瑞克一个贫苦的家庭。他的祖父是农民,父亲是打短工的,母亲是泥瓦匠的女儿,都没受过学校教育。由于家境贫寒,冬天傍晚,为节约燃料和灯油,父亲总是吃过晚饭就要孩子睡觉。高斯爬上小阁楼偷偷点亮自制的芜菁小油灯,在微弱的灯光下读书。他幼年的聪慧博得一位公爵的喜爱,15岁时被公爵送进卡罗琳学院,1795年又来到哥廷根大学学习。由于高斯的勤奋,入学后第二年,他就按尺规作图法作出了正17边形。紧接着高斯又证明了一个尺规作图的重大定理:如果一个奇素数P是费马数,那么正P边形就可以用尺规作图法作出,否则不能作出。

由此可以断定,正3边、5边、17边形都能作出,而正7边、11边、13边形等都不能作出。

高斯一生不仅在数学方面做出了许多杰出的成绩,而且在物理学、天文学等方面也有重要贡献。他被人们赞誉为“数学王子”。高斯死后,按照他的遗愿,人们在他的墓碑上刻上一个正17边形,以纪念他少年时代杰出的数学发现。

4.最后的胜利

解析几何诞生之后,人们知道直线和圆,分别是一次方程和二次方程的轨迹。而求直线与直线、直线与圆、圆与圆的交点问题,从代数上看来不过是解一次方程或二次方程组的问题,最后的解是可以从方程的系数(已知量)经过有限次的加、减、乘、除和开平方求得。因此,一个几何量能否用直尺圆规作出的问题,等价于它能否由已知量经过加、减、乘、除、开方运算求得。这样一来,在解析几何和高斯等人已有经验的基础上,人们对尺规作图可能性问题,有了更深入的认识,从而得出结论:尺规作图法所能作出的线段或者点,只能是经过有限次加、减、乘、除及开平方(指正数开平方,并且取正值)所能作出的线段或者点。

标准有了,下面该是大胆探索、细心论证。谁能避过重重险滩将思维贯通起来,谁就是最后胜利者。1837年,23岁的万芝尔以他的睿智和毅力实现了自己的梦想,证明了立方积与三等分任意角不可能用尺规作图法解决,宣布了二千多年来,人类征服几何三大难题取得了重大胜利。

二千多年来,一代接一代地攻克三大难题,有人不禁要问这值得吗?假如实际中真遇到要三等分角、立方倍积、化圆为方,只要行之有效,何苦一定用尺规作图法解决?其实,数学研究并非一定要实用,数学家对每一个未知之谜都要弄个清楚,道个明白,这种执著追求的拗劲正是科学的精神。更为重要的是,对三大难题的研究,反过来促进了数学的发展,出现了新的数学思想和方法。例如阿基米德、帕普斯发现的三等分角的方法,勃洛特用两块三角板解决立方倍积问题,等分圆周、作正多边形,高斯关于尺规作图标准的重大发现等等。每一次突破不仅是人类智慧的胜利,使数学园地争奇竞艳,而且有利于科学技术的发展。

特别值得提到的是,在三大几何难题获得解决的同时,法国数学家伽罗瓦从一般角度对不可能性问题进行研究,在1830年,19岁的伽罗瓦提出了解决这一类问题的系统理论和方法,从而创立了群论。群论是近代抽象代数的基础,它是许多实际问题的数学模型,应用极其广泛,而三大几何作图难题只不过是这种理论的推论、例题或习题。所以,一般认为三大难题的解决归功于伽罗瓦理论,可伽罗瓦理论是在他死后14年才发表的,直到1870年,伽罗瓦理论才得到第一滴全面清楚的介绍。

哥德巴赫猜想

1742年6月7日,当时还是中学教师的哥德巴赫,写信给当时侨居俄国彼得堡的数学家欧拉一封信,问道:“是否任何不小于6的偶数,均可表为两个奇素数之和?”因为哥德巴赫喜欢搞拆数游戏。20几天后,欧拉复信写道:“任何大于6的偶数,都是两个奇素数之和。这一猜想,虽然我还不能证明它,但是我确信无疑地认为这是完全正确的定理。”这就是一直未被世人彻底解决的著名的哥德巴赫猜想,也称哥德巴赫一欧拉猜想。

千古之谜——费尔马大定理

现代数论的创始人、法国大数学家费尔马(1601—1665),对不定方程极感兴趣,他在丢番图的《算术》这本书上写了不少注记。在第二卷问题8“给出一个平方数,把它表示为两个平方数的和”的那一页的空白处,他写道:“另一方面,一个立方不可能写成两个立方的和,一个四方不可能写成两个四方的和。

一般地,每个大于2的幂不可能写成两个同次幂的和。”

对数表由来之谜

如果给你一道有关对数的题目,通过查对数表,你可以很快把它运算出来。如果不用对数表,运算起来就很复杂了。这个给我们带来很大方便的对数表是谁编出来的呢?最早的编表人是瑞士钟表技师标尔基,他为了减轻当时天文学家对于“天文数字”的计算量,在著名天文学家开普勒的鼓励下,从1603年到1611年,前后用了8年时间,硬是一个数一个数地计算,编制出了世界上第一个对数表。不过这个对数表比较粗糙,错误也多,因此没有流传开来。

几乎与标尔基同时,苏格兰数学家纳伯尔选择更精确的底,用了20年时间,造出了一个精度比较高的对数表。

制造对数表最大的困难是选择多大的底。

随处可见的数字“5”

“5”这个数在日常生活中到处可见,钞票面值有5元、5角、5分;秤杆上,表示5的地方刻有一颗星;在算盘上,一粒上珠代表5;正常情况下,人的每只手有5个手指,每只脚有5个足趾;不少的花,如梅花、桃花都有5个花瓣;海洋中的一种色彩斑斓的无脊椎动物海星,它的肢体有5个分叉,呈五角星状。

总之,“5”这个数无所不在。当然数学本身不能没有它。

在数学上,有而且只有5种正多面体——正四面体、正六面体(立方体)、正八面体、正十二面体与正二十面体。平面上的五个点惟一地确定一条圆锥曲线;5阶以下的有限群一定是可交换群;一般的二次、三次和四次代数方程都可以用根式求解,但一般的五次方程就无法用根式来求解。5还是一个素数,5和它前面的一个素数3相差2,这种差2的素数在数论中有个专门名词叫孪生素数。人们猜测孪生素数可能有无穷多,而3和5则是最小的一对孪生素数。

前些年,美国数学家马丁·加德纳曾描述过一个有趣的人物——矩阵博士。

这位博士是个美国人,他的妻子是日本人,但早已亡故只留下一个混血种的女儿伊娃。他们父女二人相依为命,博士常带着女儿漂洋过海,闯荡江湖,在世界各地都有他们的足迹。

博士对数论、抽象代数有许多精辟之见。虽然他说的话乍一听似乎荒诞不经,可拿事实去验证他所说的离奇现象与规律时,却又发现博士的“预言”都是正确的。

有一次,博士来到印度的加尔各答。他说古道今,大谈“无所不在的5”。

博士指出,在印度的寺庙里,供奉着许多魔金刚,信仰这些金刚的教派之中心教义一共有5条,其中一条是所谓宇宙的永动轮回说,即认为宇宙经过5百亿年的不断膨胀后,又要经过5百亿年的不断收缩,直到变成一个黑洞,然后又开始下一轮的膨胀与收缩。如此周而复始,循环不已。降魔金刚手中,还拿着宇宙膨胀初期的“原始火球”呢?在这里,博士曾几次提到5这个数字。

英国的向克斯曾把π的小数值算到707位,以前这被认为是一项了不起的工作。自从近代电子计算机发明以后,他的工作简直不算一回事了。现在求π值的记录一再被打破,最新的记录是100万位,这是由法国人计算出来的。有意思的是,矩阵博士在这项计算以前,就作了大胆的预言,他说第100方位数必定是个5,结果真是如此!这究竟是用什么办法知道的呢?博士却秘而不宣。

循环往复的周期现象,在科技史上曾起过重大作用,门捷列夫发现元素周期表,就是突出的一例。下面请读者来看一下与5有关的有趣现象。

请任选两个非0的实数,如π与76,并准备一个袖珍电子计算器。假定计算器数字长八位,那么,的八位数值是3.1415926。现在请把第上二数76加上1作为被除数,把第一个数。作为除数做一下除法,即:

(76+1)÷3.415926=24.509861

我们把显示在计算器上的24.509861称为第三数,然后再重复上述过程,把第三数加上1,把第二数作为除数,这就得到了第四位数:0.335656,依次类推,可得到第五数、第六数……

也许读者会认为,这些数字都没有规律可循,照这样下去,真是“味同嚼蜡”。然而,当算到第六数时,你将会大吃一惊,原来第六数是3.1415931,略去这一数字后面二位因计算时四舍五入造成差异的小数,它竟和第一数的π。相等,π又回来了!如果你还不太相信,不妨再挑选一些整数,结果保证令人满意。我们可以得出结论,5是一个循环周期,第六数与第一数完全一样,第七数与第二数完全一样……要知道,这一个秘密最初也是矩阵博士想到的呢!

矩阵博士是否真有其人,我们且不去计较,可是这神奇的、无所不在的5却不能不引起人们的极大兴趣,引诱人们去探索和研究。

令人着迷的迷宫

如今,英国在世界上领先的地方可能并不多了。但是,对于那些喜欢彻底迷失方向的人,它却是最好的:因为这个国家是集世界迷宫之大成的地方。从汉普顿宫那造型优美、闻名历史的迷宫到朗利特闪闪发光的镜宫,或者散布在农田里、由庄稼形成的季节性迷宫:我们从未面临着这么多“走不出去”的路径。

自20世纪80年代以来,英国的迷宫数量已增加了两倍,达到一百二十多个,每年有成千上万的游客前往参观。世界公认的迷宫设计泰斗阿德里安·费希尔说:“这是迷宫的黄金时代。”费希尔在17个国家建造了二百多座迷宫。

在泽西海洋公园,费希尔建造了全世界最大的水上迷宫。迷宫的墙壁由高高低低的喷泉口构成,这些喷泉口形成了时隐时现的水路。他还4次创下建起世界最大迷宫的记录,其中那座巨大的“玉米迷宫”覆盖了数英亩的美国农田。

在费希尔看来,自他从1979年开始迷宫设计以后,是什么东西吸引了2000万人前往他的创造中探险呢?他说:“我觉得,对个人来说,那是指示秘密的兴奋。对于家庭来说,有机会共同完成一件事情非常难得——像迷宫这样对各个年龄段的人都有吸引力的东西并不多。”

今天的迷宫设计者在科学上的计算是如此准确:如果他们说,你需要半小时才能走出去,那么走出迷宫所需的时间就是半小时。

具有讽刺意味的是,今天的迷宫设计者面临着的最大挑战之一就是让这些挑战具有足够的难度。以古老的迷宫建造艺术中的最新创造因特网迷宫为例,这些刊登在万维网上的迷宫可能看起来很容易解决:毕竟你能看出它们的布局,知道布局就可以进入传统迷宫的中心并走出去。费希尔说:“如果走出一个现实的迷宫需要半小时,在网上只需几分钟就够了。所以,我们得找到让迷宫更富挑战性的新规则。”

但是,费希尔知道,游戏者最终总会胜利。他说:“设计迷宫就像是设计者和使用者在下棋;但在这盘棋中,总是设计者率先走出所有的步骤。我知道自己总会输,秘密在于如何输得气派。”

关于忒修斯的古希腊故事讲述了传说中的弥诺斯王在克里特岛上建造迷宫的经过。在这座由伟大的工程师代达罗斯设计的迷宫中心关着半人半牛的怪物弥诺陶洛斯,弥诺斯定期用希腊犯人喂它。后来,希腊英雄忒修斯杀死了弥诺陶洛斯,并且循着弥诺斯王的女儿阿里亚德妮给他的绳索逃出了迷宫。

克里特岛发掘出的古代钱币上的确刻有像是迷宫的图案。一些古代历史学家断言,他们知道这个神话中迷宫的下落:它在埃及国王阿门内姆哈特三世统治的王国中。阿门内姆哈特三世于公元前1800年左右在位。

同类推荐
  • 童年、在人间、我的大学(青少版名著)

    童年、在人间、我的大学(青少版名著)

    《童年》主要描写了高尔基幼年时期的生活。父亲的病逝让年幼的高尔基跟随母亲和外祖母投奔到尼日尼市的外祖父家。《在人间》记叙的是母亲死后,少年高尔基离开外祖父的家到外面去谋生的经历。《我的大学》讲述的是高尔基怀着上大学的梦想来到喀山的生活经历。
  • 历史百科(中国儿童课外必读)

    历史百科(中国儿童课外必读)

    人类文明的历史记录中蕴含着宝贵和丰富的经验与真知,是我们了解昨天、把握今天、创造明天的有力工具。本书以编年体通史的方式,把中国和世界几千年来在政治、经济、军事、文化等领域内曾发生过的重大事件、影响历史发展进程的重要人物进行了全面而清晰的梳理。读者可以通过本书清楚地看到中国及世界各个民族适应自然、改造自然、不断进步的过程,了解其文化与精神的精髓所在。
  • 军事智慧与谋略(世界军事之旅)

    军事智慧与谋略(世界军事之旅)

    青少年具有强烈的求知欲和探索欲,他们不仅对飞速发展的科学技术有着浓厚的兴趣,也对军事科学充满了强烈的好奇。真实地展现人类军事活动,也许我们无法成为一场军事变革的参与者和见证者,但我们可以把军事百科作为模拟战场。本丛书从不同角度阐述军事的相关知识。
  • 处世故事(影响青少年一生的中华典故)

    处世故事(影响青少年一生的中华典故)

    《处世故事》每个典故包括诠释、出处和故事等内容,简单明了,短小精炼,具有很强的启迪性、智慧性和内涵性,非常适合青少年用于话题作文的论据,也对青少年的人生成长以及知识增长具有重要的作用。
  • 丢失的梦

    丢失的梦

    本书共收录著名作家周海亮小小说近作79篇,多为被转载及获奖作品。其中既有表现情感的如《娘在烙一张饼》、《丢失的梦》、《江南好》等,又有表现战争的如《馘》、《仇恨》、《战壕》等,还有表现乡土的如《长凳》、《二叔的胡琴》、《老爹打工去了》等,也有表现荒诞的如《上帝的恩赐》、《躺着睡觉的马》、《菜人》等,更有表现生存境况的如《一条鱼的狂奔》、《歌手》、《剃头》等,内容丰富,篇篇精彩。
热门推荐
  • 节俭(青少年成长智慧丛书)

    节俭(青少年成长智慧丛书)

    针对当代少年儿童应具备的十种素质,把古今中外的经典故事按关键词归类。每个故事后设计有“换位思考”与“成长感悟”小栏目,用以充分调动孩子们思考问题的积极性,给孩子们以无限启迪。书中故事娓娓道来,插图生动有趣,可让孩子们在快乐的阅读中收获知识。《青少年成长智慧丛书:节俭》由四辑组成,包括:财富生活,新吝啬主义,节约的智慧,拾起一枚硬币。
  • 岳飞传

    岳飞传

    孩子们之所以喜爱《岳飞传》,白了少年头,其中有令人肃然起敬的名句:“三十功名尘与土,空悲切!”,是因为它展现了一代抗金英雄岳飞精忠报国、壮志未酬的英雄气概。八千里路云和月。还有岳飞那篇千古绝唱《满江红》。莫等闲,《岳飞传》汇聚英雄群像,弘扬传统文化
  • 心理医生不会告诉你的秘密

    心理医生不会告诉你的秘密

    本书运用通俗、简练的语言,结合大量案例,从众多角度阐述了现代人常见的各种心理问题,介绍了相应的心理治疗方法,并附有较为专业的心理测试题,相信会使各位读者从中得到帮助,从而时时生活在幸福快乐之中
  • 傻子王爷无情妃

    傻子王爷无情妃

    一只毒蝎子,彻底断送了她年轻的生命!别人只知道,那个软弱没主见的女人被迫嫁给一个痴傻呆闷的七皇子。殊不知,她早已不再是“她”!面对痴傻只会憨笑的美男,她气愤难填!你傻,本美女就医好你,谁知医好后,遭到嫌弃,却换来一纸休书,气愤之下,她恨不得与他同归于尽……
  • 防灾避险我来学

    防灾避险我来学

    事实上,除了成年人的防灾避险和保护外,我们少年儿童也需要通过自身学习及训练来掌握防灾避险常识,这不仅保护自身生命安全,更造福全家,终身受益。学生安全问题,既关系家庭的幸福,也关系社会的稳定,面对灾险,其实我们可以自行应急、转危为安的。
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 白门柳(第一部):夕阳芳草

    白门柳(第一部):夕阳芳草

    《夕阳芳草》为长篇历史小说《白门柳》的第一部。本书描述清军、农民起义军虎视眈眈,内部党争不断,大厦将倾的前一刻,江南士人名流还在为自己的理想、欲望苦苦挣扎。作者用现实主义的手法刻画了文人士大夫阶层的面貌,描绘出一幅丰富多彩的历史全景。崇祯十五年,农民起义风起云涌,清军威逼山海关。而在大后方南京,东林党人与阉党的斗争还在延续,在党争中失利的前礼部右侍郎、东林党前领袖钱谦益与宠妾柳如是商议,为了复官,谋划与内阁首辅周延儒进行利益交换,答应利用其影响力说服多数复社成员在虎丘大会上做出公议,支持阉党余孽阮大铖出山。同时,复社四公子之一冒襄为了将父亲调离前线也私下接受周延儒恩惠。
  • 喵喵,王子殿下

    喵喵,王子殿下

    我!超级无敌美少女伊莉雅,最大的心愿就是加入社团,实现自己的价值!! 虽然在这条路上屡败屡战,但在16岁时,我终于成为了自由会社的新社员! 可是……我在入社的第一天就遇见了一个神秘美少年,而且我还发现了他的秘密——他居然会冒出猫耳朵!!这究竟是怎么回事? 浪漫清新恋爱自由式!不可思议的恋人,不可思议的爱恋,喵星来的王子大作战!
  • 喋血宠妃

    喋血宠妃

    八岁,全家被杀,进入皇宫当了皇上宣侍寝官,面对粗喘娇吟以及皇上的嗔怒无常,她冷笑以对。十一岁,她如同黑暗中的催命使者,面含冷笑的为师父报了仇。十二岁,在她的设计下,宫中妃子们的胎儿一个接一个的陨落,他杀了她全家,她也绝不会让他好过。十四岁被强行占有,她对他只有恨,难有爱,曲意承欢极尽妖媚只是为了有朝一日能够——报仇雪恨!“朕感觉从来都没有看穿过邪儿的心,朕的邪儿,你还有心吗?”他修长的手指漫不经心的划她的面颊,最后停留在她心脏的位置,意味深长,暗藏凌厉的说。他是一代帝王,俊逸潇洒深沉睿智,谁想挑战他的权威,等于是在自寻死路。“皇上,你喜欢的只是无邪的这个像极了别人的容貌而已,既然如此,何必还要在意那么多,”她嫣然浅笑,锋芒暗藏毫无惧色的出言反击,终有一天,她会亲手拔去他这根杀了她全家的肉中刺眼中钉。泱泱乱世,烽火四起,皇城风云涌动,红颜倾城一笑,真的就能换得如画江山吗?他是个临国的太子,为人英俊潇洒,可是,他的身上却背负着复国大任,不同的遭遇,相同的仇恨让他们并肩举剑为了她(他)而杀出一条血路。“无邪,他虽然无情的掠夺了你的身心,但是你每天和他纠缠在一起,难道真的对他一点感情也没有吗?”陆渊目光闪烁的说,语气里掩藏孤寂的无奈。乱世的无情,冷血的杀手,想要携手以沫又是何其容易?【此文为穿越文,女主强大、冷酷,男主睿智多谋,过程会有些虐,结局是喜剧,希望大家喜欢】—————————————————————————————————《穿越为妾》《错惹酷总裁》
  • 不可不知的健康常识

    不可不知的健康常识

    在人生的道路上,不知要经历多少的坎坷。每一次的成功,也许都要经历唐僧取经般的九九八十一难。如果我们的生命真有无限长的话,即使把所有的路都走一遍都无所谓,但事实是生命有限,人生苦短,人生真正能够做事的时间不过是短短的几十年。鉴于此,我们编著了这套《不可不知丛书》,作为读者朋友面对现实生活的一面旗帜,来感召和激励人生,共同朝着美好的未来前进。