登陆注册
1754700000018

第18章 数学类发现(2)

“勾三股四弦必五”,这是世人都很熟悉的一条定理,这条定理就是勾股定理。勾股定理反映了自然界基本归律的一条重要结论。虽然看似十分简单,但它在数学发展中却起着重要的作用,在现实世界中也有着广泛的应用。勾股定理的发现、验证和应用有着悠久的历史,也都蕴含着丰富的文化价值。

⊙奇迹探秘:

1.勾股定理究竟是什么呢?

直角三角形的两个直角边的平方和等于斜边的平方,在我国,把这一特性叫做勾股定理或勾股弦定理。教科书中则是这样描述的:如果直角三角形两直角边分别为a和b,斜边为c,那么a2+b2=c2;即直角三角形两直角边的平方和等于斜边的平方。而如果三角形的三条边a、b、c满足a2+b2=c2,那么这个三角形是直角三角形,这称为勾股定理的逆定理。

走近奇迹

关于几何,人们很早前就对它有不少的研究。当然,被誉为“几何学中的明珠”的勾股定理也不例外。世界上的几大文明古国,几乎都从很早时候起就已经熟悉这个现象。

考古学家们曾经发掘出古巴比伦人的几块泥板书,大约完成于公元前2000年左右。其中一块上面刻有这样的问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边比例为3∶4∶5的三角形的特殊例子;考古专家们在另一块泥板上还发现一个奇特的数表,表中共刻有4列15行数字,经专家们仔细辨认,发现这是一个勾股数表:最右边一列为从1到15的序号,而左边3列则分别是股、勾、弦的数值,一共记载着15组勾股数。

勾股定理在印度的起源也非常早,在他们古代的书中曾经有这样一个作图的题目,要求作一个正方形是另两个正方形之和,并且也给出了作图的解释,专家们经过研究认为,这是印度对勾股定理的证明。而印度人在对这个定理的应用方面也同样十分出色,在印度数学家婆什伽罗(1114-1185)所著的《丽罗娃提》一书中,就有许多关于勾股定理的应用问题。

而在我国古代也曾经有过类似的记载。据说在公元前4000年前,夏朝的大禹就曾在治理洪水的过程中利用勾股定理来测量两地的地势差。

在我国最早的一部数学著作《周髀算经》中,曾经讲述了这样一个小故事:

周公姬旦对古代伏羲(我国古籍中记载的最早的王)通过测量天地而制定历法的事情感到不可思议,就去请教精通数学的名叫商高的人,问他数学知识从何而来。商高回答说,数的产生是来源于对圆形和方形的研究,圆形是由方形产生的,而方形又是由折成直角的矩尺产生的,而对矩形的研究则要熟悉九九口诀。设想把一个矩形沿对角线切开,使得短直角边(勾)的长为3,长直角边(股)的长为4,那么斜边(弦)的长则为5。这个原理是从大禹治水的时候总结出来的。商高所说的正是勾股定理。

到了1世纪,我国数学著作《九章算术》中也记载了一种求整勾股数组的法则。中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。

对于勾股定理的证明,希腊数学家毕达哥拉斯的证明方法一般被理解为是剖分式证明法,但他的证明方法已无从考证。然而西方世界已经普遍认为,勾股定理来源于毕达哥拉斯证明的一个几何基本原理--毕达哥拉斯树,因此,勾股定理又被称为毕达哥拉斯定理或毕氏定理。

到了科技发达的现代社会,勾股定理依然表现着它的重要性。它不仅在数学方面继续让人们为之深入研究,而且还被应用到其他领域相关数据的测算当中,甚至在宇宙探索方面它也将发挥作用。科学家们一直都在探索与寻找外星智慧生物,而如何与他们建立联系就成为了难题,我国著名的数学家华罗庚(1910-1985)就曾经建议,让宇宙飞船带上几个数学图形飞到宇宙空间去,其中一个图形就是边长为3∶4∶5的直角三角形。很早以前发现的勾股定理,现在我们期待着它在探索宇宙奥秘的过程中能够发挥作用。

⊙奇迹探秘:

2.勾股定理的证明是奇妙而吸引人的,那么它最早的证明者又是谁呢?

西方世界认为,古希腊的著名数学家毕达哥拉斯(前572-前497)是勾股定理的最早证明者。

毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛)。他从小就聪明好学,几何学、自然哲学、诗歌、音乐,可谓无所不学。他曾经十分向往东方智慧,甚至不惜长途跋涉,来到东方学习。公元前520年左右,他移居意大利的西西里岛,并在那里建立了一个宗教、政治、学术三合一的组织,称为毕达哥拉斯学派。

但在中国,我们认为最早对勾股定理进行证明的人,是我国古代的数学家赵爽。

赵爽,又名婴,字君卿,生卒年不详,东汉末至三国时代吴国人,我国历史上著名的数学家与天文学家。他所作的《周髀算经注》中有一篇《勾股圆方图注》,这篇注文简练地总结了东汉时期勾股算术的重要成果,并对勾股定理进行新的证明,同时还提出了关于勾股弦三边及其和、差关系的20多个命题。他证明的主要依据是几何图形面积的换算关系。另外,赵爽还在《勾股圆方图注》中推导出二次方程和求根公式,并且在《日高图注》中利用几何图形面积关系,给出了重差术(汉代天文学家测量太阳高、远的方法)的证明。

相关链接

【勾股定理的证明热潮】

勾股定理在几何学中具有极大的魅力,它非常简单却又十分重要。因此,千百年来,人们纷纷想要利用自己的方法去证明它。这些证明的人里,有著名的数学家,也有业余的数学爱好者,有尊贵的国家要人,更有普通的百姓,甚至连国家总统也被它的魅力所吸引。

美国第20届总统詹姆士·加菲尔德(1831-1881)就曾经证明过勾股定理,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,还把这一证法称为“总统证法”。

1940年,曾经有过一本关于勾股定理的证明专辑,名为《毕达哥拉斯命题》。在这其中就收集了367种不同的证明方法。而实际上对勾股定理的证明还不仅仅这些,有资料表明,关于勾股定理的证明方法已经有500多种,仅我国清末数学家华蘅芳(1833-1902)就提供了20多种精彩的证法。对勾股定理进行证明的热潮,是其他任何定理都无法比拟的。

知识百科

【勾股定理的别名】

勾股定理被称为“几何学的基石”,在世界各国,尤其是几个文明古国它都被广泛而深入地研究过,而这个定理的名称也可谓是五花八门。

我国是发现和研究勾股定理最古老的国家之一。我国古代数学家将直角三角形称为勾股形,较短的直角边称为勾,另一直角边称为股,而斜边则称为弦,所以勾股定理在我国也被称为勾股弦定理。

而在法国和比利时,勾股定理又叫“驴桥定理”。这是因为当时的数学水平比较低,很多学习数学的人在遇到勾股问题的时候都会被卡住,认为它难以理解与接受。因此,这个定理被戏称为“驴桥”,意思为“笨蛋的难关”。

另外,世界上许多国家都称其为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派还曾杀了100头牛来供奉神灵,因此这个定理又被称为“百牛定理”。

31.控制论与信息论

奇迹概览

控制论是研究各类系统的调节和控制规律的科学。它是自动控制、通讯技术、计算机科学、数理逻辑、神经生理学、统计力学、行为科学等多种科学技术相互渗透形成的一门学科。在控制论诞生后,美国数学家克劳德·香农在1948年发表了题为《通信的数学理论》的论文,成为现代信息论研究的开端。控制论和信息论是20世纪三四十年代发展起来的横向学科,是在总结了许多其他科学成就的基础上发展起来的,是人们认识事物、进行科学研究的重要方法论。

⊙奇迹探秘:

1.控制论是如何诞生的?它的发现者是谁?

随着生产实践与学科发展的需要,控制论在实践中诞生了。

诺伯特·维纳(1894-1964),美国数学家,控制论发现者。他很聪明,11岁上大学,14岁考进哈佛大学研究生院学动物学,后又去学哲学,18岁时获得哈佛大学的数理逻辑博士学位。1913年,刚刚毕业的他又去欧洲向数学大师们学习数学。正是这样多种学科知识的积累,为他后来发现控制论打下了坚实的基础。1919年,他从统计物理方面萌发了控制论思想。第二次世界大战期间,他参加了美国研制防空火力自动控制系统的工作,提出了负反馈概念,对控制论的诞生起了决定性的作用。

1943年,他与别人合写了《行为、目的和目的论》的论文,首先提出了“控制论”这个概念,阐明了控制论的基本思想。同年底,生物学家、数学家、社会学家、经济学家在纽约召开会议,从各自角度对信息反馈问题发表意见。以后又连接举行这样的讨论会,对控制论的产生起了推动作用。1948年,维纳总结了有关成果,出版了奠基性著作《控制论》一书,宣告了控制论的诞生。

走近奇迹

20世纪40年代,由于自然科学、工程技术、社会科学和思维科学的相互渗透与交融汇流,产生了具有高度抽象性和广泛综合性的控制论和信息论。

控制论是多门科学综合的产物也是许多科学家共同合作的结晶。控制论的主要方法有控制方法、反馈方法、功能模拟方法、信息方法和黑箱方法等。控制论诞生后,得到了广泛地应用与迅猛地发展,大致经历了三个发展时期。

第一个时期为20世纪50年代,是经典控制论时期。这个时期的代表除了生物控制论外,有我国著名科学家钱学森1945年在美国发表的《工程控制论》。

第二个时期是20世纪60年代的现代控制论时期。导弹系统、人造恒星,生物系统研究的发展,使控制论的重点从单变量控制到多变量控制,从自动调节向最优控制,由线性系统向非线性系统转变。

第三时期是20世纪70年代后的大系统理论时期。控制论由工程控制论、生物控制论向经济控制论、社会控制论和人口控制论等发展。其中生物控制论又分化出神经控制论、医学控制论、人工智能研究和仿生学研究。社会控制论则把控制论应用于社会的生产管理、效能运输、电力网络、能源工程、环境保护、城市建议,以至社会决策等方面。

信息论是研究信息的产生、获取、变换、传输、存贮、处理识别及利用的学科。人们对于信息的认识和利用,从古代就开始实践了。中国古代用点火方式和古罗马地中海城市用悬挂灯笼的方式,它们都是传递信息的原始方式。随着社会生产的发展,科学技术的进步,人们对传递信息的要求急剧增加。1948年,美国数学家克劳德·香农发表《通信的数学理论》,1949年发表《噪声中的通信》,从而奠定了信息论的基础。

20世纪70年代以后,随着数学计算机的广泛应用和社会信息化的迅速发展,信息论正逐渐突破香农狭义信息论的范围,发展为一门不仅研究语法信息,而且研究语义信息和语用信息的科学。它的建立是人类认识的一个飞跃。信息论迅速渗透到各个不同的学科领域,但还不够完善。为了适应科学技术发展的需要,迎接信息化社会的到来,一门新的科学正在迅速兴起--信息科学。信息科学是由信息论、控制论、计算机、人工智能和系统论等相互渗透、相互结合而形成的一门新兴综合性学科。

控制论和信息论是现代信息技术的理论基础。它们具有十分重要的理论意义和实践意义,体现了现代科学整体化发展趋势,为现代科学技术提供了新的思路和科学方法。

⊙奇迹探秘:

2.什么是黑箱方法,它指的是一只黑色的箱子里面有方法吗?

今天,人们在许多科学研究领域,都可以碰到“黑箱”这个概念,但它并不是指一只真正的黑色箱子,而是控制论中的一个重要概念。到底什么是“黑箱”呢?粗略地说,所谓黑箱是指它的内部构造和机理还不清楚,但可以通过外部观测和试验来认识它的功能和特征。作为一种近代科学方法,黑箱方法已越来越受到人们重视。

在日常生活中,人们都在自觉或不自觉地运用这种方法。比如说看电视,如果说看电视必须要懂得电视内部结构和工作原理才行,那能看电视的人就很少了。但是,人们虽然不懂得电视机内部构造和工作原理,却知道按哪个开关打开它,调整哪些开关可以得到清晰稳定的画面,什么情况是出了故障,等等。这些都是我们运用黑箱问题的方法的具体体现。

相关链接

【无人化工厂】

随着控制论和信息论的广泛应用,很多工厂也开始实行多级计算机管理与控制系统,从而让工厂变成“无人化工厂”。“无人化工厂”,是工厂自动化的最高形式,但并不是真的无人,只是与传统的工厂中布满工人的情况相比而言, “无人”工厂中绝大部分现场工人将退出生产领域, 仅有少数的工作人员从事监督和维护工作。

1986年,美国底特律有一家汽车制造厂在投入使用的一条自动生产线,一排银色汽车底盘沿着生产线流动到某个位置时就会停下来,底盘两侧的6个“焊工”立即投入工作,23 秒钟便焊好了250个接头,技术一流。它们不是一般的普通电焊工,而是机器人。

知识百科

【克劳德?香农】

克劳德·香农(1916-2001),美国数学工程师,信息论的创始人,被称为“数字通信之父”。克劳德·香农的祖父是一位农场主兼发明家,发明过洗衣机和许多农业机械,这对香农的一生影响很大。香农的大部分时间是在贝尔实验室和麻省理工学院度过的。1948年和1949年,香农先后发表了影响深远的论文《通讯的数学原理》和《噪声下的通信》。在这两篇论文中,他阐明了通信的基本问题,成了信息论的基础性理论著作。年轻有为的香农取得这么大的成就,立刻轰动了世界,激起了人们对信息论的巨大热情。香农也因此成了这门新兴学科的开创者。如今,信息工业、数字通信在社会中发挥中越来越重要的作用,香农这个名字也为更多的人所熟悉和了解。

同类推荐
  • 昆虫记:螳螂的爱情(第5卷)

    昆虫记:螳螂的爱情(第5卷)

    《昆虫记》卷五中法布尔将视线集中在鞘翅目、同翅目和螳螂目昆虫身上,通过对甲虫、金龟、蜣螂、蝉和螳螂的观察,向我们揭示了这些昆虫对自己的爱侣和孩子的款款深情,用生动、平实的语言谱写出昆虫世界的爱情诗篇。
  • 今天我是升旗手

    今天我是升旗手

    他心中有一个愿望:当一回学校的升旗手,但愿望总是得不到实现。精力充沛,奇想迭出,品学兼优。他没有放弃努力,崇拜英雄,团结“学习尖子”林茜茜,帮助“追星族”祝小娜,和包郝、马驭等同学智抓“偷猴贼”,主人公肖晓出身于军人家庭,积极参加“手拉手”活动……终于,他在临近小学毕业的时候亲手升起了一面鲜艳的五星红旗
  • 魔方步步高(超级智商训练营)

    魔方步步高(超级智商训练营)

    本书注重对阅读技巧的培养,体现了英语学习中的大阅读观。书中设计了“读能诊断”、“阅读指南”、“难篇精练”、“难题精练”、“阅读欣赏”、“拓展任务”六个模块。其中“读能诊断”、“拓展任务”栏目设置了主观试题,从而有利于提高学生的英语能力,“阅读指南”栏目具体全面剖析了阅读及应试的技巧。
  • 让女孩受益一生的成长故事100篇

    让女孩受益一生的成长故事100篇

    本书主要内容有:木兰从军、东施效颦、小山羊和大灰狼、伞的故事、小娇的蓬蓬裙、 地鼠之劳、 蛤蟆的友谊、 打开另一扇窗户、公主的胸针(上)、公主的胸针(下)、杜图瓦:美丽的金枪鱼、跳蚤和绵羊、蝴蝶与火焰、伪装成牧羊人的狼等。
  • 军事智慧与谋略(世界军事之旅)

    军事智慧与谋略(世界军事之旅)

    青少年具有强烈的求知欲和探索欲,他们不仅对飞速发展的科学技术有着浓厚的兴趣,也对军事科学充满了强烈的好奇。真实地展现人类军事活动,也许我们无法成为一场军事变革的参与者和见证者,但我们可以把军事百科作为模拟战场。本丛书从不同角度阐述军事的相关知识。
热门推荐
  • 社会契约论

    社会契约论

    《社会契约论·论人类不平等的起源》是西方政治文化传统的重要组成部分,它不但源远流长,而且已经完全融入了西方思想文化的血液,成为西方政治思想中一个历久弥新的源泉(晚近西方社会政治哲学以契约论的形式复兴就是一个明证)。书中主要讨论了国家与人民、国家与法律、自由与平等、国家与社会等问题。《论人类不平等的起源》被誉为法国大革命的灵魂。在《社会契约论·论人类不平等的起源》中,卢梭指出人类每向前发展一步,不平等的程度就加深一步。《社会契约论·论人类不平等的起源》阐发了卢梭的政治哲学思想,为《社会契约论》奠定了基础,同时也是他整个政治学说的导言。
  • 弃妇种田忙

    弃妇种田忙

    农门春色浓。穿越成为大了肚子的弃妇,白若竹决定靠山吃山靠水吃水,靠空间吃空间,带着萌宝种田经商奔小康。顺便再给孩子找个美男做爹爹,可是那个带面具的妖孽,你不要总爬我窗户好不好?======新书《福妻跃农门》正式发布,欢迎大家收藏养肥~
  • 潘多拉的眼泪:第七个天堂

    潘多拉的眼泪:第七个天堂

    她是见不得光的私生女,倒在大雪里奄奄一息时一个神秘少年救了她。那邪魅的笑容,仿佛恶魔一般囚禁着她的心。五年之后,她带着强大的复仇心理回来了。凭着秦家私生女的身份,一步一步的走向了最高点。他是荧幕前的宠儿,是高高在上娱乐界的大明星。孤冷清傲,一尘不染的如同神谪。她冷漠,她无情,她恶毒。最终,那冰冷的心又会为谁而融化成了一滴滴热泪。你知道什么叫做意外吗?就是我从来没想过我会遇见你。但是我还是遇见了。我从来没有想过我会爱上你,但是我却爱了。
  • 余生请跟我走

    余生请跟我走

    嗜血腹黑,死亡的象征。她为了复仇,故意接近一个象征死亡的他,精心设计了一场死亡游戏。四年后,(全文完)他暗夜王者,为了一颗心脏,‘死亡’的她再次与他相对...“好久不见。”她淡淡地嘴角一勾。“好久不见?!”他勾唇一笑,这一次他要做那颗心脏,因为它死,她也会死,她不死,就注定逃离不了他的手心!腹黑对腹黑,强者遇上强者,是相互刺伤还是追逐与逃跑的好戏....且看她如何一步步俘虏夜帝的心!
  • 无敌大小姐

    无敌大小姐

    当现代阴狠毒辣,手段极多的火家大小姐火无情,穿越到一个好色如命,花痴草包大小姐身上,会发生怎样的化学反应?火无情一醒过来就发现,自己竟然在众目睽睽之下上演脱衣秀。周围还有一群围观者。这一发现,让她极为不爽。刚刚穿好衣服,便看到一个声称是自家老头的老不死气势汹汹的跑来问罪。刚上来,就要打她。这还得了?她火无情从生自死,都是王者。敢动她的人,都在和阎王喝茶。于是,她一怒之下,打了老爹。众人皆道:火家小姐阴狠毒辣,竟然连老爹都不放在眼里。就这样,她的罪名又多了一条。蛇蝎美人。穿越后,火无情的麻烦不断。第一天,打了爹。第二天,毁了姐姐的容。第三天,骂了二娘。第四天,当众轻薄了天下第一公子。第五天,火家贴出招亲启事:但凡愿意娶火家大小姐者,皆可去火府报名。来者不限。不怕死,不想活的,欢迎前来。警示:但凡来此,生死皆与火家无关。若有残病者火家一律不负法律责任。本以为无人敢到,岂料是桃花朵朵。美男个个很妖娆一号美人:火无炎。火家大少爷。为人不清楚,手段不清楚。容貌不清楚。唯一清楚的是,他有钱。有多多的钱。火无情语录:钱是好东西。娶了。(此美男,由美瞳掩饰不了你眼神的空洞领养。)火老爷一气之下,昏了过去。家门不幸,家门不幸啊。二号美人:竹清月。江湖人称天上神仙,地上无月。大国师一枚。美得惊天动地。火无情语录:美人好,尤其是自带嫁妆又会预测未来的美人,娶了。(此美男,由东de琳琳领养)三号美人:轩辕子玉。当朝七皇子,游历四国。一张可爱无敌的脸。单纯至极。火无情语录:可爱的孩子好,可爱又乖巧的孩子更好。可爱乖巧又不用给钱的孩子,娶了。(此美男,由刘千绮领养)皇帝听闻,两眼一抹黑。他的儿啊。怎么就这么不争气呢。四号美人:天下第一美男。性格不详,籍贯不详。火无情语录:谜一样的美人,她喜欢。每天都有新鲜感。娶了。(此美男,由告别的爱情li领养。)五号美人:天下第一名伶。火无情语录:解风情的美男,如果没钱花把他卖了都不用调教。娶了。(此美男由伊眸领养。)六号美男:解忧楼楼主。相貌不详,身世不详。爱好杀人。火无情语录:凶恶的美人,她喜欢。娶了。(此美男由陈铭铭领养)七号美男:琴圣。貌如谪仙,琴音杀人。冷清眸子中,百转千回,说尽风流。(此美男由伊眸领养)夜杀:天下第一杀手。(此美男由静寂之夜领养)
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 剑心轮回

    剑心轮回

    杀尽天下该杀之人!剑,然而一场意外彻底改变了他的命运!三足金乌。让他从一个弱者领会了杀戮,段痕,为剑术天才的转世,自小跟着师傅学武,从杀戮中学会了用剑!直到成为万人敬仰的巅峰强者!剑心轮回!,盘古后裔,修罗剑道!为他打开了一扇成为强者的大门
  • 小女子闯江湖

    小女子闯江湖

    【此文很纯、很痴情】左手江山,右手美人,他想拥抱美人,奈何江山阻拦了他的脚步。她,一个小女子,独闯江湖去。美男求爱,我是否能在红尘中,忘却曾经的爱?罢了!我独独难忘,你!京城内,你是否和我一样,在思念着,我?
  • 当朝第一恶妻

    当朝第一恶妻

    夫君喂!半夜洗好黄瓜,既不乏口腹蜜剑的本事,你别用抽筋式的目光看臣妻,也不乏十步杀一人的气势,夫君呀,欢迎亲们跳坑。”郡王:“别罗嗦了,溺水重生,本郡王现在要逼宫。皇后:“你们继续,本宫只是来围观的。我骄傲!”《你丫抢婚有完没完》,夫君呀,今晚洗好了身子,一对一,这样的恶女人怎能当你的妻?”皇上:“皇后,一对一,朕被抛弃了。”严望:“有此恶妻,楠竹性子诡异,肩头落着吃肉的八哥,随心所欲,你那阎王夫君朕也怕,女主性子清冷,严大人移情别恋了,宝宝可爱!公主:“严哥哥,楠竹顶天立地,侠盗李七七变成了官家千金李七七。抱着比老虎凶残的猫,男女身心干净!柳絮繁体出版文:《钦差相公仵作妻》精彩悬疑文!推荐柳絮经典完结文东唐皇朝三部曲:柳絮另外完结一对一文:收受贿赂,欺男霸女有木有?《半路杀出个庶女来》楠竹有双重性格。”七七:“皇上喲,绝对独一无二的楠竹,臣妻也只是个传说。皇上:“严夫人哟,大宠女主,要申请政治避难!”七七:“呜呜,错过会后悔哦!七七:“呜呜,全文无小三,你没事太好了,更有精彩案情等待,你很失望。有仇不报非女子!她邪恶,腹黑闷骚,以恶制恶玩的爽歪歪!《特警傻后要休夫》女主反出皇宫,将仇人夫君的行踪泄露出去差点要了他的命?皇上吆!假装勾引扑到有木有?她一个人祸害太无聊,女扮男装,祸害他全家,破案寻找真爱的故事贵妃:“本宫要李七七的命。”众人:“想找死的滚一边去死。”《别惹楚家大小姐》女强宠文!《法医嫡女御夫记》,谁惹她,种田宠文,戳戳屁股有木有?《毒吻》现代都市警花宠文!,为你清洗伤口的一大桶盐水为妻早就烧好了。”仇人锦衣卫头子上门来逼婚。”本文一对一,她骄傲!半夜三更婆家扮个鬼,女主睿智机变,放猫放八哥!嫁给仇人祸害死他,男强女强,祸害死他的奸夫兼靠山皇上同志!贤妻良母那一套丢进茅厕,对手戏多,吓死人不偿命。”《娘子,我们夫妻俩何时竟然如此相惜相知了。严望:“看到为夫还没死。”啥,一对一,大家一起来祸害才够爽!严望:“回府,到我怀中来》种田宠文,我们洞房”
  • 东宫有本难念的经

    东宫有本难念的经

    宝庆十九年春,大佑国皇太子大婚,大将军之女入主东宫。一个不是淑女的将门千金遭遇一个不是文韬武略的中庸太子,到底是佳偶天成,还是冤家路窄?成婚一年不足,太子忽然休妻。迷影重重,生死茫茫,这样一来,还是不是大团圆结局?