登陆注册
3237100000005

第5章

人们从认识分数到研究分数,是从单位分数开始的。单位分数就是形如1n(n1的正整数)的分数。在3700多年前埃及的纸草书上,已经认识到:所有分子为2、分母为2n+1(n为2到49的正整数)的分数,可以分解为一些不相同的单位之和。如:

27=14+128

297=156+1679+1776

而通过这种表示法可以进行任何分数运算:如:

521=121+221+221

=121+114+142+114+142

=121+214+242

=121+17+121

=17+221=17+114+142

巴比伦人也使用六十进位的分数,即分母是60、602、603的分数。在很长一段时间内,欧洲人将分数运算视为畏途。

中国是世界上较早对一般分数进行研究的国家。公元前5世纪的《考工记》中,就有“十分之寸之一为一枚”的记载,即110寸等于一分。西汉时期《周髀算经》中,已经有了更复杂的分数运算。公元1世纪(东汉时期)的数学家专着《九章算术》中,专列“方田”一章,介绍通分、约分、比较分数大小的方法,以及有关加、减、乘、除运算的法则。这些知识与现代采用的方法基本相同,比印度领先500多年,比欧洲早1400多年。

负数的引入

今天人们都能用正负数来表示相反方向的两种量。例如若以海平面为0点,世界上最高的珠穆朗玛峰的高度为十8848米,世界上最深的马里亚纳海沟深为-11034米。在日常生活中,则用“十”表示收人,“-”表示支出。可是在历史上,负数的引人却经历了漫长而曲折的道路。

古代人在实践活动中遇到了一些问题:如相互间借用东西,对借出方和惜人方来说,同一样的东西具有不同的意义。分配物品时,有时暂时不够,就要欠某个成员一定数量。再如从一个地方,两个骑者同时向相反的方向奔驰,离开出发点的距离即使相同,但两者又有不同的意义。久而久之,占代人意识到仅用数量来表示一事物是是不全面的,似乎还应加上表示方向的符号。为了表示具有相反方向的量和解决被减数小于减数等问题,逐渐产生了负数。

中国是世界上最早认识和应用负数的国家。早在二千年前的《九章算术》中,就有了以卖出粮食的数目为正(可收钱),买入粮食的数目为负(要付钱);以入仓为正、出仓为负的思想。这些思想,西方要迟于中国八九百年才出现。

无理数的风波

无理数就是不能表示为整数或两整数之比的实数,如2、π等等。这些数不像自然数或负数那样,可在实际生活中直接碰到,它是在数学计算中间接发现的。

人们发现的第一个无理数是2。据说,它的发现还曾掀起一场巨大的风波。古希腊毕达哥拉斯学派是一个研究数学、科学、哲学的团体,他们认为一切数都是整数或者整数之比。有一个名叫希帕索斯的学生,在研究1和2的比例中项时(如果1:x=x:2那么x为1和2的比例中项),左思右想都想不出这个中项值。后来,他画一边长为1的正方形,设对角线为x,于是x2=12+12=2。他想,x代表正方形对角线长,而x2=2。他想,那么x必定不能是整数,那么x会不会是分数呢?毕达哥拉斯和他的学生们绞尽脑汁也找不到这个数。

这样,如果x既不是整数又不是分数,它是什么样的数呢?希帕索斯等人认为这必定是一个新数。这一发现,使得毕达哥拉斯等学派的观点动摇了,从而导致了西方数学史上的第一次“数学危机”。而希帕索斯本人因违背了毕达哥拉斯学派的观点而受到处罚,被扔到大海里淹死了。

无理数的发现,使数的概念又扩大了一步。

神秘的9

爱因斯坦出生在1879年3月14日。把这些数字连在一起,就成了1879314。重新排列这些数字,任意构成一个不同的数(例如3714819),在这两个数中,用大的减去小的(在这个例子中就是3714819-1879314=1835505),得到一个差数。把差数的各个数字加起来,如果是二位数,就再把它的两个数字加起来,最后的结果是9(即1+8+3+5+5+0+5=27,2+7=9)。

哥白尼的生日是1473年2月19日,牛顿的生日是1642年12月25日,高斯出生于1777年4月30日,居里夫人出生于1867年11月7日,只要按照上面的方法去计算,最后一定都得到9。实际上,把任何人的生日写出来,做同样的计算,最后得到的都是9。

把一个大数的各位数字相加得到一个和;再把这个和的各位数字相加又得到一个和;这样继续下去,直到最后的数字之和是个一位数为止。最后这个数称为最初的那个数的“数字根”。这个数字根等于原数除以9的余数。这个计算过程,常常称为“弃九法”。

求一个数的数字根,最快的方法是在加原数的数字时把9舍去。例如求385916的数字根,其中有9,而且3+6,8+1都是9,就可以舍去,最后只剩下5,就是原数的数字根。

利用弃九法,可以检验很大数目的加减乘除的结果。例如a-b=c,为了检验结果c,用a的数字根减去b的数字根(如果前者较小就加上9),看看差数是否对得上c的数字根。如果对不上,那么前面的结果肯定是算错了;如果对上了,那么计算正确的可能性是89。

由这些知识可以解释生日算法的奥秘。假定一个数n由很多数字组成,把n的各个数字打乱重排,就得到一个新的数n′,显然n和n′有相同的数字根,把两个数根相减就会得0。也就是说,n-n′一定是9的倍数,它的数字根是0或9。而在我们的算法中0和9本是一回事(即一个数除以9所得的余数)。n-n′=0,只有在n=n′即原数实际上没有改变时才发生;只要nn′,n-n′累次求数字所得的结果就一定是9。

稀少而有趣的完美数

已知自然数a和b,如果b能够整除a就是说b是a的一个因数,也称为约数。显然,任何自然数a,总有因数1和a。我们把小于a的因数叫做a的真因数。

例如:6,12,14这三个数的所有真因数:

6:1,2,3;1+2+3=6

12:1,2,3,4,6;1+2+3+4+6=1612

14:1,2,7;1+2+7=1014

像12这样小于它的真因数之和的叫做亏数(不足数);大于真因数之和的(如14)叫做盈数或过剩数;恰好相等的(如6)叫做完全数,也称为完美数。

古希腊人非常重视完全数。大约在公元100年,尼可马修斯写了第一本专门研究数论的书《算术入门》,其中写道:“也许是这样:正如美的、卓绝的东西是罕见的,是容易计数的,而丑的、坏的东西却滋蔓不已;所有盈数和亏数非常之多,而且紊乱无章,它们的发现也毫无系统。但是完全数则易于计数,而且又顺理成章……它们具有一致的特性:尾数是6或8,而且永远是偶数。”

现在数学家已发现,完全数非常稀少,至今人们只发现29个,而且都是偶完全数。前5个分别是:6,28,496,8128,33550336。

经过不少科学家的研究,现在已经发现,假如数2n-1,是素数,那么数2n-1·(2n-1)就一定是完全数,其中的n也同样是素数。为此,数学家就用英文Prime(素数)的第一个字母p代替n,还把形如2p-1的素数叫“默森尼数”。但是,对于下面两个问题:“偶完全数的个数是不是有限的?”“有没有完全数?”数学家到现在还没有解决。

完全数有许多有趣的性质,例如:

1.它们都能写成连续自然数之和:

6=1+2+3,28=1+2+3+4+5+6+7,496=1+2+3+4+……+31,8128=1+2+3+4+……+127;

2.它们的全部因数的倒数之和都是2。

11+12+13+16=2

11+12+14+17+114+128=2

11+12+14+18+116+131+162+1124+1248+1496=2

亲和的友好数

友好数又叫亲和数,它指的是这样的两个自然数,其中每个数的真因数之和等于另一个数。

毕达哥拉斯是公元前6世纪的古希腊数学家。据说曾有人问他:“朋友是什么?”他回答:“这是第二个我。正如220和284”为什么他把朋友比喻成了两个数呢?原来220的真因数是1,2,4,5,10,11,20,22,44,55和110,加起来得284;而284的真因数是1,2,4,71,142,也起来也恰好是220。284和220就是友好数。它们是人类最早发现的又是所有友好数中最小的一对。

第二对友好数(17296,18416),是在二千多年后的1636年才发现的。之后,人类不断发现新的友好数。1747年,欧拉已经知道30对,1750年又增加到60对。到现在科学家已经发现了900对以上这样的友好数。令人惊讶的是,第二对最小的友好数(1184,1210)直到19世纪后期才被一个16岁的意大利男孩发现的。

人们还研究了友好数链;这是一个连串自然数,其中每个数的真因数之和都等于一个数,最后一个数的真因数之和等于第一个数。如:12496,14288,15472,14536,14264。有一个这样的链镜包含了28个数。

悬而未决的费马数

伟大的科学家同样也会犯错误,科学史上这样的事件屡见不鲜。被举为“近代数论之父”、“业余数学家之王”的17世纪法国数学家费马就是其中一个,而且他所犯的错误又恰恰是在他最擅长的数论之中。

1640年,费马发现:设Fn=22n+1,则当n=0,1,2,3,4时,Fn分别给出3,5,17,257,65537,都是素数。这种素数被称为“费马数”。由于F5太大(F5=4294967297)他没有再进行验证就直接猜测:对于一切自然数n,Fn都是素数。不幸的是,他猜错了。1732年欧拉发现:F5=225+1=4294967297=614×6700417,偏偏是一个合数!1880年,又有人发现F6=226+1=27477×67280421310721,也是合数。

不仅如此,以后陆续发现F7,F8……直到F19以及许多n值很大的Fn全都是合数!虽然Fn的值随着n值的增加,以极快的速度变大(例如1980年求出F8=1238926361552897×一个62位数),目前能判断它是素数还是合数的也只有几十个,但人们惊奇地发现:除费马当年给出的5个外,至今尚未发现新的素数。这一结果使人们反过来猜测:是否只有有限个费马数?是否除费马给出的5个素数外,再也没有了?可惜的是,这个问题至今还悬而未决,成了数学中的一个谜。

欧拉首先使用的符号i

在实数范围内,方程x2+1=0是无解的,因为任何实数,不论是正数、零还是负数,它的平方都是正数,或是零,不可能找到平方等于-1的数。

为了使这个方程有解,科学家引入了一个新的单位数i,规定它有性质i2=-1,这样的性质是任何实数都没有的。根据这性质知道它有i=±-1,这与在实数范围内负数不能开平方的结论不同,人们把-1记作i称为虚数单位,由于虚数单位i和一个实数合起来组成的数,称为虚数,如6i,10i。

符号i是数学家欧拉于1777年在他的论文中首先使用的。后来德国数学家高斯系统地运用它,并给出了有关虚数的运算法则,以后逐渐被普遍采用。有了i这个虚数单位,人们就将数从实数扩充到复数。复数的形式为a+bi,其中a、b为料数若a=0,b0,则称bi为纯虚数;若a0,b=0,那就是实数。因此可以把实数看成虚部为零的复数。

在复数范围内,人们规定了它的运算法则。设a1+b1i和a2+b2i是两个复数,有:

(a1+b1i)+(a2+b2i)=(a1+a2)+(b1+b2)i

(a1+b1i)-(a2+b2i)=(a1-a2)+(b1-b2)i

(a1+b1i)·(a2+b2i)=(a1a2-b1b2)+(a1a2+b1b2)i

a1+b1ia2+b2i=

(a1a2+b1b2)+(b1a2-a1b2)ia22+b22

例如:(25+2i)-(20-2i)

=(25-20)+(2--2)i

=5+22

勾股数和费马大定理

如果一个直角三角形的两条直角边分别是a和b斜边是c,那么a2+b2=c2,这就是着名的“勾股定理”。如果a、b、c都是正整数,就说它们是一组勾股数。一般地说,勾股数就是不定方程x2+y2=z2(1)的正整数解。

在公元前1900-前1600年的一块巴比伦泥板中,记载了15组勾股数,包括(119,120,169),(3367,3456,4825),(12709,13500,18541)这样一些数值很大的勾股数,说明当时已经有了求勾股数的某种公式。

于是人们进一步设想:在(1)中,如果未知数的次数比2大,还有没有正整数解呢?

大约在1637年,费马认真地研究了这个问题,指出,他已经证明,一个立方数不可能表为两个立方数之和,一个四次方也不可能表为两个四次方之和。一般说来,指数大于2的任何幂不可能表为两个同样方幂之和。也就是说,当n>2时,不定方程x2+y2=z2(2)没有正整数解。这就是通常人们所说的费马大定理,也叫费马最后定理。

后来,一直没有发现费马的证明。300多年来,大批数学家,其中包括欧拉、高斯、阿贝尔、柯西等许多最杰出的数学家都试图加以证明,但都没有成功,使这个大定理成了数学中最着名的未解决问题之一。现在一般认为,当初费马也并没有证出这条定理。

费马大定理也吸引了无数业余爱好者。当1908年德国哥廷根科学院宣布将发给第一个证明它的人10万马克奖金时,据说有些商人也加入了研究的行列。但由于费马大定理不可能有初等证明,因而那些连初等数论的基本内容都不熟悉的人,对此只能“望洋兴叹”了。这说明攻克世界难题,不仅需要勇气和毅力,还需要具备扎实的基础知识。

强盗的难题

强盗抢劫了一个商人,将他捆在树上准备杀掉。为了戏弄这个商人,强盗头子对他说:“你说我会不会杀掉你,如果说对了,我就放了你,决不反悔!如果说错了,我就杀掉你。”

聪明的商人仔细一想,便说:“你会杀掉我的。”于是强盗头子发呆了,“哎呀,我怎么办呢?如果我把你杀了,你就是说对了,那应该放你;如果我把你放了,你就说错了,应该杀掉才是。”强盗头子想不到自己被难住了,心想商人也很聪明,只好将他放了。

这是古希腊哲学家喜欢讲的一个故事。如果我们仔细想一想,就会明白那个商人是多么机智。他对强盗说:“你会杀掉我的。”这样,无论强盗怎么做,都必定与许诺相矛盾。

如果不是这样,假如他说:“你会放了我的。”这样强盗就可以说:“不!我会杀掉你的,你说错了,应该杀掉。”商人就难逃一死了。

下面这个例子也是有趣的。有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都能做得到。一位过路人问了一句话,使他顿时张口结舌。

这句话是:“上帝能创造一块他也举不起来的大石头吗?”请你想一想,这个教徒为什么会哑口无言?

部分也能等于整体吗?

同类推荐
  • 让生命开出绚烂花(培养学生心灵成长的经典故事)

    让生命开出绚烂花(培养学生心灵成长的经典故事)

    在这套丛书里,我们针对青少年的心理特点,专门选择了一些特殊的故事,分别对他们在这一时期将会遭遇的情感问题、生活问题、学习问题、交友问题以及各种心理健康问题,从心理学的角度进行剖析和讲解,并提出了解决问题的方法和措施,以供同学们参考借鉴。
  • 快乐作文大全集(优秀小学生必读)

    快乐作文大全集(优秀小学生必读)

    书突破了传统的作文教育和写作模式,针对小学生的写作水平筛选并列举了众多优秀范文,突出了创新性和趣味性,并对常见的记叙文、说明文等文体进行了重点示范。相信对提高小学生的文字表达能力会有很大帮助,让他们轻松地读,快乐地写。让写作文不再头疼!
  • 中国现代作品

    中国现代作品

    我们中小学生必须要加强阅读量,以便提高自己的语文素养和写作能力,以便广开视野和见识,促进身心素质不断地健康成长。但是,现在各种各样的读物卷帙浩繁,而广大中小学生时间又十分有限,因此,找到适合自己阅读的读物,才能够轻松快速地达到阅读的效果。
  • 幸福的艺术蓓蕾

    幸福的艺术蓓蕾

    凤城唐山,钟灵毓秀。自古以来英才辈出,皆因重教兴学也。幸福小学,千禧肇建,薪传十载,烛照百代。办学有道,突出艺术特色;施教有方,促进全面发展。十年建设、十年发展、十载辉煌。
  • 头脑充电大本营(中小学生奥林匹克集训与选拔)

    头脑充电大本营(中小学生奥林匹克集训与选拔)

    “中小学生奥林匹克集训与选拔”丛书旨在通过向青少年提供集知识性和趣味性于一体的科学文化知识,激发他们学习科学和热爱科学的积极性,引导他们拓宽视野,不断创新,最终达到提升综合性素质的目的。其中涉及到青少年必须知道的许多知识领域,具有很强的系统性、实用性和现代性,是青少年学习的最佳读本。
热门推荐
  • 他们看我不顺眼

    他们看我不顺眼

    《他们看我不顺眼》收录了柳恋春近年来创作发表的24个短篇小说,其中多为公开发表的小说和省级文学刊物获奖作品。
  • 奋斗的飞跃(优秀人才成长方案)

    奋斗的飞跃(优秀人才成长方案)

    21世纪的青少年面临着生存能力、毒品、艾滋病、创新潜能、环保意识、意志力培养、独立自主、文学修养、良好习惯、心理健康、语言表达能力、写作能力、自我管理、安全保护等考验!当你在人生的道路上迷茫时,此套书为你明确前进的方向;当你陷于痛苦煎熬时,此套书为你补足勇气去战胜一切困难;当你迷失自我时,此套书将为你制定振作精神的计划。如果我们有足够的勇敢去爱,有足够的坚强去宽容,有足够的度量去为别人的快乐而高兴,有足够的睿智去理解充溢于我们身边的爱,那么我们便可得到前所未有的满足感。此套书是一套内容丰富、文笔流畅的励志精品集。每次读起,字里行间对我们的灵魂是一种很好的滋养。
  • 凤浴火

    凤浴火

    *古言一对一,女强男强,身心皆干净,欢迎跳坑。她,顶级杀手,掌控暗杀之术,冷酷无情,行事霸道。一朝穿越,家族却惨遭灭门,随后,她更是被当作牺牲品,替身远嫁。——嫁给谁?东离国三皇子是也!据说三皇子终年以银色面具示人,神秘邪魅,鬼神莫近。整个东离国盛传,他乃妖魔转世,爱好搜罗女童,不做别用,专门生吃,更有传言,有人见过他的真容,却被勾魂夺魄,至今仍未清醒……一时间,他的府邸宛如地狱,人人避而远之。那年,她成为了他的王妃。四国鼎立,当烽烟起时,谁能沉浮?一代妖妃,横空出世,她,同样可以尽展荣华,凤欲火,倾天下。*狂傲、霸道、冷酷……是她。腹黑、邪魅、妖孽……是他。时空穿梭,两者命运交汇。是她降服了他,掌控一切…还是他蛊惑了她,占据所有。*她说:我这一生,半生戎马,势力滔天,倾覆天下,要男人又有何用?我不愿自己的短处就此暴露。他说:我这一世,遗世独立,韬光养晦,肆意风流,要女人似乎也没用?我不想自己的长处为此葬送。长处?短处?似乎可以互补…到底有没有用?————试过才知道!!★☆★☆★☆(PS:三皇子到底做了什么,大家不妨猜猜,呵呵。)
  • 无敌大小姐

    无敌大小姐

    当现代阴狠毒辣,手段极多的火家大小姐火无情,穿越到一个好色如命,花痴草包大小姐身上,会发生怎样的化学反应?火无情一醒过来就发现,自己竟然在众目睽睽之下上演脱衣秀。周围还有一群围观者。这一发现,让她极为不爽。刚刚穿好衣服,便看到一个声称是自家老头的老不死气势汹汹的跑来问罪。刚上来,就要打她。这还得了?她火无情从生自死,都是王者。敢动她的人,都在和阎王喝茶。于是,她一怒之下,打了老爹。众人皆道:火家小姐阴狠毒辣,竟然连老爹都不放在眼里。就这样,她的罪名又多了一条。蛇蝎美人。穿越后,火无情的麻烦不断。第一天,打了爹。第二天,毁了姐姐的容。第三天,骂了二娘。第四天,当众轻薄了天下第一公子。第五天,火家贴出招亲启事:但凡愿意娶火家大小姐者,皆可去火府报名。来者不限。不怕死,不想活的,欢迎前来。警示:但凡来此,生死皆与火家无关。若有残病者火家一律不负法律责任。本以为无人敢到,岂料是桃花朵朵。美男个个很妖娆一号美人:火无炎。火家大少爷。为人不清楚,手段不清楚。容貌不清楚。唯一清楚的是,他有钱。有多多的钱。火无情语录:钱是好东西。娶了。(此美男,由美瞳掩饰不了你眼神的空洞领养。)火老爷一气之下,昏了过去。家门不幸,家门不幸啊。二号美人:竹清月。江湖人称天上神仙,地上无月。大国师一枚。美得惊天动地。火无情语录:美人好,尤其是自带嫁妆又会预测未来的美人,娶了。(此美男,由东de琳琳领养)三号美人:轩辕子玉。当朝七皇子,游历四国。一张可爱无敌的脸。单纯至极。火无情语录:可爱的孩子好,可爱又乖巧的孩子更好。可爱乖巧又不用给钱的孩子,娶了。(此美男,由刘千绮领养)皇帝听闻,两眼一抹黑。他的儿啊。怎么就这么不争气呢。四号美人:天下第一美男。性格不详,籍贯不详。火无情语录:谜一样的美人,她喜欢。每天都有新鲜感。娶了。(此美男,由告别的爱情li领养。)五号美人:天下第一名伶。火无情语录:解风情的美男,如果没钱花把他卖了都不用调教。娶了。(此美男由伊眸领养。)六号美男:解忧楼楼主。相貌不详,身世不详。爱好杀人。火无情语录:凶恶的美人,她喜欢。娶了。(此美男由陈铭铭领养)七号美男:琴圣。貌如谪仙,琴音杀人。冷清眸子中,百转千回,说尽风流。(此美男由伊眸领养)夜杀:天下第一杀手。(此美男由静寂之夜领养)
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 培养杰出能力的经典故事全集

    培养杰出能力的经典故事全集

    要成就卓越人生,杰出的能力是不可或缺。青少年处在人生的成长阶段,正是挖掘自我潜质、培养能力、提高素质的黄金时期。本书结合当今社会现实,通过经典故事,总结出19种杰出青少年应具备的最基本而又最突出的能力,帮助青少年自觉培养好各种能力,为将来适应社会、获取成功,做好充分准备。
  • 整合:让一切为我所用

    整合:让一切为我所用

    资源的整合到底有多重要?古人带兵打仗,讲究的是天时、地利、人和,三者缺一不可,这就是资源有效整合的一个典范。我们熟知的古代以少胜多的战事,大多数都可从中分析出之所以如此结局最深刻的原因。现在的商场就如战场。我们周围可以看到这样一些事情:有些老板很忙,忙到坐下来抽根烟喝口水的时间都快没了,对于这样的人我们总是很敬佩,亲力亲为嘛,可是公司的效益却没有上去,反而有所下降;有些老板却很闲,经?常约朋友去打打高尔夫啊、骑骑马啊什么的,公司的效益却很让人眼红。为什么呢?我觉得很重要的一个原?因,就在于其是否重视并进行了有效的资源整合。
  • 从零开始读懂金融学

    从零开始读懂金融学

    本书从金融学名词货币信用、银行利率、资本运作、金融机构、金融热点等方面系统讲述了金融学的基本理论知识及其在现实社会生活中的应用。书中没有令人费解的图表和方程式,也没有艰深晦涩的金融学行话,而是以金融学的基本结构作为骨架,以生活中的鲜活事例为血肉,将金融学内在的深刻原理与奥妙之处娓娓道来,让读者在快乐和享受中,迅速了解金融学的全貌,并学会用金融学的视角和思维观察、剖析种种生活现象,指导自己的行为,解决生活中的各种难题。
  • 燕家有恶女

    燕家有恶女

    兄台,听说过燕家堡吗,没听过燕家堡你还算江湖中人?什么,你不混江湖?那你总见过的燕形标记的茶馆、酒楼、当铺,听过燕家小姐的传闻。燕家小姐,出生克死了娘亲,满月就送到了尼姑庵。十二岁第一次回家,逼死了继母,逼疯了幼弟,逼走了父亲。十七岁嫁给指腹为婚的飞鱼山庄少庄主,才三天就红杏出墙被休回家。从此,纵横商场,游戏江湖,抢得美少年无数,连当今皇上最宠的七皇子都躲不过。若是你连这些惊世骇俗的事儿都没听过,真是白做了几年人,问问别人,谁不知道燕家有恶女。。晚上更,一周断更一天。。场景一:她斜睨父亲的盛怒,抱紧怀里吓得失神的少年,“你真不认弟弟当儿子了?”“住口。这贱种不是我的儿子。”“你不要我要。以后,他就是我的夫君了。”“你可知道夫君是什么?”燕傲天问那个在尼姑庵里住了十二年的女儿。“不就是要一辈子在一起,全心全意爱他宠他对他好。”她坦然说。…“好,罢了,”看到她沉静的眸子,燕傲天觉得自己老了,“以后你就留在家里继承家业吧。你的名字,就叫燕惊鸿。”“惊鸿?”她邪气一笑,“父亲大人,你的名字取晚了。我自取了名字,叫笑悠。我先是燕笑悠,再是你的女儿燕惊鸿!”。。场景二:“你就是我要嫁的夫君于修朗吗?娶我可不代表娶了燕家堡。”“好。”他微笑,眸中印着她的容颜。…“修朗,你等我一年,北方的生意出了一点问题。”“好。”他仍是微笑,淡淡地,掩着些许寂寞。…“修,你再等我一年,南方水患,有许多商铺受损。”“好。”他淡淡微笑,忍下心中的不舍。…一年复一年,她十七岁,在外地查帐时,听说他纳妾的消息。于是,一身嫁衣到了飞鱼山庄门口,三日夫妻换得一纸休书。“于修朗,你是我第一个男人,也是我唯一能容忍跟别人分享的男人。从此,你管你的飞鱼山庄,我管我的燕家堡。我们只言商,不言情。”。。场景三:“我知道燕家堡是朝廷控制江湖的工具,父亲让我继承燕家堡自然让我继承所谓的职责。”她低笑,不掩饰眼中的算计。“不过,这是我家祖宗定下的狗屁誓言,跟我有什么关系。你要我做的,只要有利可图,我当然会做。你想扶持谁,我会帮忙稳固他的势力,你需要钱财赈灾,我就是抢也会给你,你要掌握邻国的动静,我连皇帝床上的话都能一字不漏的传给你。我要的是通商的自由和便利,还有,别打你家小七的主意,我定下他了,绝不让他去当什么皇帝。”皇帝震惊,指着她说不出话来。。