登陆注册
3235200000009

第9章 1用砂粒填满宇宙(8)

留下2,把2后面所有2的倍数都划去,凡是2的倍数都是偶数,也就是把2后面的所有偶数划去;

①,2,3,,5,,7,,9,10,11,12,13,14……

留下3,把3后面所有3的倍数都划去;

①,2,3,4,5,,7,8,10,11,12,13,14,15,16……

留下5,把5后面的所有5的倍数都划去,也就是把5后面所有个位是0和5的数都划去;

①,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16……

留下7,把7后面所有7的倍数都划去;

如此继续做下去,一直筛到100以内的合数全部划尽。

下面的表就是筛去了全部合数后,得到的100以内的质数。

①23456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100

100以内的质数有:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97等,共25个。

46铁栅栏门推拉起来轻松

有一种用铁条做成的门,开和关都很方便。轻轻一推,铁栅栏门就像松紧带似地挤拢在一起,变得很窄,轻轻地一拉,铁栅栏门又像网子似地伸开,变得很宽。你仔细地进行观察,如果除了发现门的顶部和底部都装有滑轮,可以使大门的关启变得格外轻松之外,还发现使铁门能宽能窄,能拢能伸,能轻松关启的根本原因是在于铁门的构造的话,那就找到了解答这个问题的关键。

原来铁门是由一个个的菱形(即四条边相等的平行四边形)组成。四条边长一定的四边形,它的形状并不固定,四边形的这种性质,叫做四边形的不稳定性,我们在学习四边形的时候,对它的这个性质一定已经有所认识。

聪明的工人叔叔,正是利用这种性质,制成了能够推拢和拉开的铁大门。

把这种性质合理地应用,不只是制作成关启起来非常轻松的铁栅栏门。

你们也许见过,有一种装货的大卡车,在它的身后还挂着一节装货的车箱,连接卡车与车箱的往往是菱形结构的链子;一种盛东西的网兜,用塑料绳或线绳编织而成,不用的时候,收拢在一起,伸开可以装不少东西;有一种可以合拢和伸开的自行车筐,不用的时候,合拢在一起成一个很扁的长方体,不占地方,要用的时候,打开成为一个能装东西的车筐,极大地方便人们的生活。

只要我们留意观察,还一定会发现许多利用“四边形不稳定”的这一性质,合理地为工农业生产和人们日常生活服务的事例。

47谁更聪明

传说有这样一个故事:

有一个土耳其商人,想找一名助手。有两个人前来“应征”,商人想测验一下两个人谁聪明。

商人将他们两人带进了一间屋子,这间屋子里既没有镜子,也没有窗户。商人将照明用的灯点着,然后将一个装着帽子的盒子放到两个人的面前,打开盒盖说:“这里面有五顶帽子,两顶是红色的,三顶是黑色的。现在我把灯灭掉。”随即便熄了灯,屋子里黑得什么也看不见了。商人接着说:“现在我们三个人每人从盒子里摸出一顶帽子戴在自己的头上。”三个人在黑暗中摸到帽子戴在头上后,商人把装帽子的盒子重又盖上盖,再将灯重新又点着,并说:“你们要尽快地说出自己头上戴的帽子是什么颜色。”

当灯亮了以后,两人都看到商人头上戴的是一顶红色的帽子,而另一个人的头上戴的是黑色的帽子,自己的头上戴的该是什么颜色的帽子呢?黑的?还是红的?

只过了一会儿,其中一个人兴奋而自信地说:“我戴的是黑帽子!”这个人果然猜对了,商人录用了他。

他为什么能很快地又十分肯定地说出自己头上所戴帽子的颜色呢?

他是这样想的:一共只有两顶红色的帽子,商人头上已经戴了一顶红色的,如果我头上戴的也是红色的,对方就可以毫不犹豫地立刻判断出自己戴的是黑色的帽子。可是,对方在灯亮了以后的短暂时间里没有立即说出,就这一点,便可以肯定我头上戴的不是红色的帽子。正因为我戴的是黑色的帽子,才使他与我有同样的考虑,同样的犹豫。我就是在灯亮了以后,对方正在犹豫的瞬间作出了这样的判断。

这样的分析和判断是令人信服的。你也能像聪明人那样去思考问题吗?

48为什么九条路不可能不相交

在世界各地,广泛地流传着一道数学名题,尽管说法有不同,但实质上是同一个问题:某地有三个村庄和三所学校,从每个村庄到三所学校各修一条路,能不能使这九条路互不相交呢?您可能以为,只要不怕费事绕绕弯子,这事是不能办到的。可事实并非如此,上述想法是不能实现的,这里有着奥妙的数学原理。

19世纪,瑞士大数学家欧拉,在研究多面体的顶点数、棱数和面数的关系时,发现了一个规律,如立方体有8个顶点、12条棱、6个面、具有关系8-12+6=2。其它多面体也是这样,即一个多面体若有n个顶点、m条棱、p个平面,则一定有n-m+p=2,这就是着名的欧拉公式。

有了欧拉公式,前面的问题就可迎刃而解了。把问题看成是立体图形,每个村庄或学校就相当一个顶点,一条路就相当一条棱,用路围起来的部分就相当于一个面。因为有九条棱、六个顶点,那么有6-9+p=2,即p=5,就是说应该有5个面;而从另一个角度考虑,从一个村庄出发,走一条路就到达一所学校,再走一条路就到达另一个村庄,再走一段路就到达另一所学校,再走一段路才能回到原地。所以围成一个至少要四段路即四条边,现有9条棱,若数面的边当然是18条边,至少四条边围一个面,当然围不成5个面。也就是说九条路的设想是不能实现的。读者们不妨想一下,若只修八条路能否实现?

对这类问题的研究,已经形成了数学领域的一个分支——拓扑学。它对工程设计,机器元件的设计,集成电路设计,电子计算机的程控、各种信息网络系统的建立,都有广泛的应用。

49为什么球面不能展成平面图形

我们知道:圆柱、圆锥、圆台的侧面面积,可以利用它们在平面内的展开图来求出。由于球面不能展成平面图形,所以球的表面积公式无法用此法求出。

为什么球面不能展成平面图形呢?我们作如下说明。

圆柱、圆锥、圆台的侧面可以看成由一条直线(或线段)运动生成,球面是不能通过直线运动生成的。换言之,圆柱、圆锥、圆台的侧面存在直线,而在球面上没有一条直线存在。所以球面不能展成平面图形。我们把能够展成平面图形的曲面称为直纹面,圆柱、圆锥、圆台的侧面都是直纹面。

若在平面上随意剪下一块,例如矩形或扇形,就可以即不叠皱,也不撕破地吻合在圆柱或圆锥的侧面上。而在平面上无论你剪下什么样的形状的一块,都无法既不叠皱也不撕破地贴在球面上。事实上,如果我们在剪下的矩形、扇形或某一形状上,过任意一点,沿任意方向作相交于该点的直线段a、b、c……将这些画有线段a、b、c……的矩形、扇形贴在圆柱、圆锥侧面上,a、b、c……的长度均不变。而将画有线段a、b、c……的某形状往球面上贴,或者贴不上去,或者“贴”上去了,则某些方向上的线段c或d……长度就变了。因为只有使某些线段重合一部分,或拉长,或撕断才能贴在球的表面上去。两个曲面(平面是曲面的特殊情况)可以互相贴合的充要条件是这两个曲面等距。所谓等距是指两曲面间建立了一一对应关系,且对应曲线长度相等。平面与球面是建立不了等距关系的,所以球面不能展成平面图形。

50默比乌斯带的奥秘

默比乌斯带是拓扑学家们的杰作之一。它使人感到古怪的是:只有一侧的曲面。

它的制做是极为简单的。我们把一个双侧环带随意在一处剪开,然后,扭转一半,即180°。再粘合到一起来形成封闭的环,就得到了默比乌斯带。

但如果描述为没有“另一侧”,这是很难理解和想象的。但做起来却很容易,你可随意从一处开始涂色(不离开这面)最终你将会发现默比乌斯带都被你涂上了颜色,也就说明这的确是一个单侧面的带子。

默比乌斯带具有各种意想不到的性质,有人称之为“魔术般的变化”。如果我们把默比乌斯带沿中线剪开,出乎意料地得到了一条双侧带子而不是两条。数学家对这种奇妙的现象解释为:一条默比乌斯带只有一条边,剪开却使它增加了第二条边与另一侧。如果把默比乌斯带沿三等分线剪开将使你又获新奇之感。剪刀将环绕纸带子走整整两圈,但只是一次连续的剪开,剪的结果是两条卷绕在一起的纸条,其中的一条是双侧纸圈,另一条则是新的默比乌斯带。你看,这真是一个奇妙的带子。

51你能找到海盗藏宝的地点吗

传说有一帮海盗,把劫得的财宝埋在一个荒岛上,并在一张纸上写了若干诗句暗示藏宝地点,这样以便于把宝物遗留给他们的后代。几十年后,海盗们被捕获,在被击毙的头目身上发现了这张纸条,上面写到:何处找?在海岛;绞架直行到石马,右转同长是甲处;绞架直行到大树,左转同长是乙处;甲乙中分地,深挖勿泄气。不难看出这是一个埋藏重要物品的地点的说明,官方立即派人到岛上搜索,然而一到岛上,人们不免犯了难,大树、石马依然还在,而绞架荡然无存,这藏宝地点怎样确定呢?

后来终于有人用平面几何作图的方法,证明了藏宝地点仅与石马和大树的位置有关,而与绞架位置有关,于是轻而易举地找到了藏宝地点。下面我们来看一下这个问题的证明。

设石马为点A,大树为点B,在AB连线的一侧任取一点C算作绞架位置。连结CA,作DACA且DA=AC;再连BC,作EBCB且EBCB且;连DE,其中点F假定为藏宝地点,如图作CC’、DD’、EE’、FF’都和AB垂直,C’D’E’F’分点为垂足,由ACC’DAD’,可知AD’=CC’,又由BCC’EBF’,可知BE’=CC’,又由F是DE中点,可知F’是D’E’中点。所以知F’是AB中点;另一方面我们又可证明,DD’=AC’,EE’=BC’,DD’+EE’=AB。由梯形中位线定理可知FF’=12(DD’+EE’)=12AB,那么F是位于AB中垂线上且与A中点的距离等于AB长的一半,可见F点的位置与C点的选择是无关的。

读者不妨试一下,在AB的另一侧取点C。甚至在直线AB上取点C,看看点F的位置是否是不变的。

52最巨大的数学专着

公元前4世纪,古希腊数学家欧几里得写过一部《几何原本》,共有13卷,它成为不朽的经典着作流传至今。1939年,书架上突然出现了《数学原本》(第一卷)。好大的口气!作者是谁?署名是从未听说过的布尔巴基。这部书从那时起,到1973年,已出到第35卷,至今还没有写完。它是目前最巨大的数学专着。

布尔巴基是一个集体的笔名。本世纪20年代末,法国巴黎大学有几名大学生,立志要把迄今为止的全部数学,用最新的观点,重新加以整理。这几个初出茅庐的青年人,准备用3年的时间,写出一部《数学原本》,建立起自己的体系。这当然是过高的奢望,结果他们写了40年,至今还没有完成,但是布尔巴基学派却在这一过程中形成了。他们在数学界独树一帜,把全部数学看作按不同结构进行演绎的体系,因而以结构主义的思想蜚声国际,赢得了数学界的赞扬。布尔巴基学派甚至已经影响到中学教科书,我国近几年翻译的英、美、日本中学教材里,都有它的影子。

布尔巴基学派最初的成员有狄多涅和威尔等人,他们开始写《数学原本》时只是20来岁的青年,现在已经70开外,成为国际着名的数学教授了。

《数学原本》是一部有崭新体系的数学专着,而并非东拼西凑的数学百科全书,它以吸收最新数学成果并加以剖析而受到重视。近几年,《数学原本》的前几卷已重新修订,每卷又补充了近三分之一的新材料。这部巨着是用法文写的,现在已有英、俄、日等国文字的译本。翻译《数学原本》是一个巨大的工程,翻译成日文时,还曾专门成立了一个委员会。

53最繁琐的几何作图题

早在古代,就有人能用直尺和圆规作出正三角形、正方形和正五边形了。可是,利用尺规来作正七边形或正十一边形或正十三边形的任何尝试,却都是以失败而告终。

这种局面持续了二千多年,数学家们猜想,凡是边数为素数的正多边形(如正七、正十一、正十三边形等)看来用圆规和直尺是作不出来的。但是在1796年,完全出乎数学界的意料之外,19岁的德国青年数学家高斯找到了用圆规和直尺来作边数为素数的正十七边形的方法。这个成就是如此辉煌,不仅使数学界为之轰动,而且也促使高斯把数学选为自己的终身职业。

五年以后,高斯又进一步宣布了能否作任意正多边形的判据。他证明了下面的定理:凡是边数为“费尔马素数”(即边数是2+1形状的数,而且还要是素数)的正多边形,就一定可以用尺规来作图。当n=2时,就是正十七边形;当n=3时,就是正二百五十七边形;当n=4时,就是正六万五千五百三十七边形……他还证明了,如果边数是素数,但不是费尔马素数的话(例如上面所提到过的正七边形,正十一边形等),那末这样的正多边形就不能用圆规和直尺来作出。

紧接在17以后的两个“费尔马素数”是257和65537。后来,数学家黎西罗果然给出了正二百五十七边形的完善作法,写满了整整80页纸。

另一位数学家盖尔美斯按照高斯的方法,得出了正六万五千五百三十七边形的尺规作图方法,他的手稿装满了整整一只手提皮箱,至今还保存在德国的着名学府哥庭根大学里。这道几何作图题的证明,可说是最为繁琐的了。

54最精确的圆周率

圆周长与直径的比,称为圆周率,符号π,我国古代很早就得出了比较精确的圆周率。我国古籍《隋书·律历志》记载,南北朝的科学家祖冲之推算圆周率π的真值在31415926与31415927之间,他所得到的π的近似分数是密率355/113。德国人奥托在1573年才重新得出祖冲之密率355/113,落后了11个世纪。英国数学家向克斯穷毕生精力,把圆周率算到小数点以后707位,曾被传为佳话,但是他在第528位上产生了一个错误,因此后面的100多位数字是不正确的。

同类推荐
  • 教你打排球(学生球类运动学习手册)

    教你打排球(学生球类运动学习手册)

    21世纪,人类进入了新经济时代。综合国力竞争的实质是民族素质的竞争,是人才的竞争,是教育的竞争。在这样的背景下,加强素质教育,尤其是进行身体素质教育就显得更为重要。球类运动是世界上开展的最广泛的运动项目之一,也是广大体育爱好者乐于观赏和参与的体育运动。经常进行此类运动,不仅可以增强人们的体质,提升身体的协调性,而且还能增强我们的自信心以及培养团队精神。
  • 指导学生心理健康的经典故事:抛弃萌动的大烦恼

    指导学生心理健康的经典故事:抛弃萌动的大烦恼

    每个人都在梦想着成功,但每个人心中的成功都不一样,是鲜花和掌声,是众人羡慕的眼神,还是存折上不断累积的财富?其实,无论是哪一种成功,真正需要的都是一种健康的心理。有了健康的心理才是成功的前提与保证,在人的一生中,中学是极其重要的一个阶段,心理健康对以后的健康成长非常重要。
  • 新课标最佳阅读:史记菁华

    新课标最佳阅读:史记菁华

    《史记》不但是我国历代正史的鼻祖,也是一部文学巨著。常读《史记》,可以训练欣赏文学的能力和写作文章的技巧。但《史记》的卷帙庞大,内容广泛,遍及天文、地理、术算各方面,一般人若要全读,分量实在太多,时间和精神往往不能应付。所以,删除赘文,撷取菁华,是个必要的工作,可以便利人们阅读和欣赏,《史记菁华》正是这部文史巨著的节本。
  • 教你打曲棍球·高尔夫球(学生球类运动学习手册)

    教你打曲棍球·高尔夫球(学生球类运动学习手册)

    21世纪,人类进入了新经济时代。综合国力竞争的实质是民族素质的竞争,是人才的竞争,是教育的竞争。在这样的背景下,加强素质教育,尤其是进行身体素质教育就显得更为重要。球类运动是世界上开展的最广泛的运动项目之一,也是广大体育爱好者乐于观赏和参与的体育运动。经常进行此类运动,不仅可以增强人们的体质,提升身体的协调性,而且还能增强我们的自信心以及培养团队精神。
  • 达尔文传(语文新课标课外必读第六辑)

    达尔文传(语文新课标课外必读第六辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
热门推荐
  • 航母时代的号角:中途岛海战(下)

    航母时代的号角:中途岛海战(下)

    本书讲述了二战爆发后,日本在发动珍珠港事变后,为彻底打败美国海军,发动了中途岛海战,结果阴差阳错,由于指挥失误,遭到惨败,从而使太平洋战场遭到逆转的过程。本书对海战原因、经过及最终结局均作了细致描写。
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 傻子王爷无情妃

    傻子王爷无情妃

    一只毒蝎子,彻底断送了她年轻的生命!别人只知道,那个软弱没主见的女人被迫嫁给一个痴傻呆闷的七皇子。殊不知,她早已不再是“她”!面对痴傻只会憨笑的美男,她气愤难填!你傻,本美女就医好你,谁知医好后,遭到嫌弃,却换来一纸休书,气愤之下,她恨不得与他同归于尽……
  • 阴阳盗墓人

    阴阳盗墓人

    一个土耗子的后人发现了龙凤玉佩的秘密,他集齐了一批经验丰富的盗墓人前去寻宝,一群土耗子从一座古墓中带出了一枚龙凤玉佩,谁也没想到,二十年后,一片寻常的养尸地,几乎全军覆没,竟然充满了险恶危机:燕啼血、养活尸、九星莲台、血月鬼尸……这次有去还能有还吗?,二十年前
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 武林高手混异界

    武林高手混异界

    一次奇遇改变了他的命运,因一人让他重生到了异界,一本奇书让他称霸三界。将会给你带来一个崭新不同的的异世世界……
  • 追捕,猎爱之令

    追捕,猎爱之令

    为将妹妹复活,不死之王久朗殇终于踏上了寻找前世恋人的旅途。帝星学院中,危机重重,她是蓝颖优?莎莉叶?还是特蕾西?突破重重迷雾之后,她最终找回的,是失去已久的亲情,还是至死追随的深爱?伊始的十三纯血贵族终于归位,七虹光破出神殿,主神回归,迎来最终的决战!而当最深爱的人为自己付出生命,黑姬樱又该怎么做才能获得救赎?最后的最后,迷雾终究散开……
  • 中国第一商帮

    中国第一商帮

    为什么哪里有市场,哪里就有浙江人?为什么全国500强企业中,浙江企业总是位居前列?为什么每年的福布斯富豪榜上,浙商总是占据绝大多数?浙江商人作为商人的一个群体,不仅创造了许多财富,而且为全国商人提供了一套可学可操作的经商哲学。经商要学浙商,浙江商人最大的优势在于精神优势……
  • 宠君

    宠君

    本文女尊,不喜勿入!男性勿入,雷到不管!!此文美男多枚,风情各异!轻歌端着一碗莲子羹进了书房,弯眉一笑:“主子,夜深了,歇息了吧?看什么呢?这么用功?”某色奸笑藏起国策下面的春春图(大家明白啦):你这人儿来的真及时啊!舒无月脖子一梗,指着身上某处的守宫砂,自嘲一笑:“小色,你打算一直就这么晾着我么?”某色嘴角抽搐,眼冒绿光:打算?没这打算啊!(画外音:百合女瞎了眼了。)苏白眯眼一笑,小酒窝,长睫毛,眼波流转,声音酥软:“莫小色,我跟了你,你就得对我好,不然我就咬你!”某色无视缠在腰间的手臂贴在身上的人,只是看着手腕的牙印欲哭无泪:这不是女尊么?我怎么没有一点妻权呢?颜清一甩袖子,棋盘上的棋子都在地上直骨碌滚,银牙一咬:“莫小色!你答应我家的事怎么没有办到?我的人都来你们王府了,难不成你想退回去?”某色蹲下身子拾掇棋子,额头冒汗:娘啊!你怎么不办事呢?这大半夜的,我不想被窝里有个火山啊!银多多眨巴着水润的大眼睛,满手拿着银元宝不肯放下来:“莫姑娘,你到我房里来做什么?”某色撇嘴:这么晚了,大家都关门闭户了,我来你这儿联络下男女感情不行么?木杏子脸色酡红,扭捏半晌:“主子是,是看不上我么?”某色鼻血横流:你的身材都赶上金城武了,我还看不上?那我不傻么!雪衣一曲琴曲收尾,衣衫尽褪,清华的像月下的仙子:“世女既然买了雪衣的初夜,为何只听琴曲?”某色为难:扑?还是,扑!算了,小醋缸回去再收拾吧!龙九离一脸不屑,嗤笑:“莫小色,你以为你还走得了么?这样折辱我朝,朕定要好好的惩罚你!以雪国恨!”某色被绑住,面露不解:惩罚就惩罚吧!你把我往床上带做什么啊?龙九玉一脸阴冷,眼底却突显温柔:“小色,你留下来,咱们一起好不好?”某色一激灵:此话当真?那还是逃命要紧啊!诶,你手往哪儿放呢?琴素一脸鄙夷忿恨,眼底慌乱迸现:“莫小色,我中的药不要你来解,你怎么还不走?”某色无辜,无人处奸笑:哦——是吗?那你干嘛拉着我的手要蹭蹭咧?还蹭蹭‘那儿’!上官小涵一脸的温柔:“色儿,你说,这几个字读什么?”某色傻眼:你一个才子,连这都不知道么?床笫之欢嘛!额,你咋介样啊?笑的像个特务似的。答应要宠尽世间繁华,答应要宠爱一世逍遥,我答应了你们,而你们,可曾答应了自己?谁卸下一世雍容,颓唐万千,唯眼眸深情不变?
  • 续红楼之水润玉心

    续红楼之水润玉心

    林黛玉在宝玉和宝姐姐成亲的晚上,伤心欲绝,投入了潋滟湖,被刘家村的一对老夫妇救起,巧遇北静王爷水溶,从而又引发了一段缠绵温馨的······片段一:林姑娘,我怎么舍得你离开我呢!我巴不得照顾你一辈子的!片段二:林姑娘,刚刚你看到我的时候,心里非常高兴是吗?还有这首诗,是你为我而做的吗?你心里一直在惦念着我,是吗?向大家推荐我的另外一部作品《续红楼之潇湘情缘》