登陆注册
3046800000003

第3章 生命医学探奇(2)

光合作用对于大多数人来说,好像没有什么太大的秘密,似乎它的过程无非就是吸收二氧化碳,放出氧气,但实际上光合作用并不那么简单,其中包含着复杂的机理。

光合作用对人类的意义非比寻常。人类所需要的许多生产生活资料都是由光合作用产生的,如果没有光合作用就不会有人类的生存与发展。所以,光合作用研究是一个重大的生物科学问题,同时又与人类现在面临的粮食、环境、材料、信息问题等密切相关。

现在世界上每年通过光合作用产生2200亿吨物质,相当于世界上所有的能耗的10倍。要植物产生更多的物质,就需要提高光合作用效率。通过高新技术转化,我们甚至可以让有些藻类,在光合作用的调节与控制下直接产生氢。根据光合作用原理,还可以研制高效的太阳能转换器。

光合作用与农业的关系同样密切,农作物产量的90%到95%来自光合作用。高产水稻与小麦的光合作用效率只有1%到1.5%,而甘蔗或者玉米的效率则可达到50%或者更高。如果人类可以人为地调控光能利用效率,农作物产量就会大幅度增加。

探究多领域的应用

近年来,空气里面二氧化碳不断增加,产生温室效应。光合作用能否优化空气成分,延缓地球变暖,也很值得探索。光合作用研究,还可以为仿真模拟生物电子器件,研制生物芯片等,提供理论基础或有效途径,对开辟未来纪新兴产业产生广泛而深远的影响。正是这些,使得光合作用研究在国际上成为一大热点。

早在两个多世纪以前,科学家就已经知道了光合作用,但真正开始研究光合作用还是在量子力学建立之后,人们也越来越为它复杂的机制深深叹服。

现在,科学家们已经知道,光合作用的吸能、传能和转化均是在具有一定分子排列及空间构象、镶嵌在光合膜中的捕光及反应中心色素蛋白复合体和有关的电子载体中进行的。但是让科学家们不可思议的是,从光能吸收到原初电荷分离涉及的时间尺度仅仅为1015~1017秒。这么短的时间内却包含着一系列涉及光子、激子、电子、离子等传递和转化的复杂物理和化学过程。

更让人惊奇的是,这种传递与转化不仅神速,而且高效。在光合膜系统中,在最适宜的条件下,传能的效率可高达94%~98%,在反应中心,只要光子能传到其中,能量转化的量子效率几乎为100%。这种高效机制是当今科学技术远远不能企及的。

相关链接——关于光合作用的谜团

光合系统这个高效传能和转能超快过程到底是如何进行的?其全部的分子机理及其调控原理究竟是怎样的?为什么这么高效?这迄今仍是多年来一直困扰着众多科学家的谜团。

有科学家说:要揭开这一谜团,在很大程度上依赖于合适的、高度纯化和稳定的捕光及反应中心复合物的获得,以及现在各种复杂的超快手段和物理及化学技术的应用与理论分析。事实上,现在所有的物理、化学最先进设备与技术都能用到光合作用的研究中。

光合作用的另外一个谜团是:生化反应起源是自然界最重大的事件之一,光合作用的过程是一系列非常复杂的独立代谢反应,它究竟是如何演化而来?

美国亚利桑那州立大学的生化学家称,这个反应演化来自细菌,大约在25亿年前,但光合作用发展史非常不好追踪。有多种光合微生物使用相同但又不太一样的反应。虽然有一些线索能把它们联系在一起,但还是不清楚它们之间的关系。专家们还试图透过分析5种细菌的基因组来解决部分的问题。研究结果显示,光合作用的演化并非是一条从简至繁的直线,而是不同的演化路线的合并,把独立演化的化学反应混合在一起。也许,他们的工作会给人类这样一些提示:人类也可能通过修补改造微生物产生新生化反应,甚至设计出物质的合成反应。这样的工作对天文生物学家了解生命在外星的可能演化途径,也大有裨益。

那么是否会有那么一天,人们可以模拟光合作用从工厂里直接获取食物,而不再一味依靠植物提供呢?科学家们认为,在近期内这种设想还是不可能实现的,因为人类对光合作用的奥秘并不真正了解,还有很多问题需要进一步弄清楚,要实现人类的这一长远理想,可能还要付出更为艰辛的努力。

生命为何偏爱螺旋结构

多姿多彩、妙不可言的生命现象,历来都是人们最关注的课题之一。一批批生物学家在探索生物之谜的过程中,为之奋斗以至献身,以卓越的贡献扬起生物学“长风破浪”的航帆。今天,当我们打开群星闪耀的生物学史册时,对J·沃森(JinWatson)、F·克里克(FrancisCrick)的杰出贡献,不能不予以格外关注。就是这2位科学巨匠,在50多年前提出了“DNA双螺旋结构模型”的惊世观点,翻开了分子生物学的新篇章。如果说在揭示生物进化发展规律、推动生物学发展方面,19世纪达尔文进化论具有里程碑意义的话,那么,DNA双螺旋结构模型的提出,则是开启生命科学新阶段的又一座里程碑。以它为起点,人类开始进入改造、设计生命的征程。

双螺旋结构的发现

尽管浩繁纷杂的生物千差万别,但从最小的病毒到大型的哺乳动物,不论哪个种类,都能把自己的性状毫无例外地一代代传承下去;但无论是亲代与子代,还是子代各个个体之间,又总会存在差别,即便是双胞胎。人们经常用“一母生九子,九子各别”和“种瓜得瓜,种豆得豆”两句谚语,生动地概括存在于一切生物中的这一自然现象,并为揭开遗传、变异的奥秘进行了不懈的探索。

有人早在17世纪末,就提出过“预成论”的观点,认为在性细胞(精子或卵细胞)中,预先包含着一个微小的新的个体雏形,所以生物能把自己的性状特征传给后代。不同的是,精原论者认为这种“微生体”存在于精子当中;而卵原论者则认为存在于卵子之中。

然而无论在精子还是卵子中,人们根本见不到这种“雏形”,所以这种观点很快就被事实所推翻。取而代之的理论是德国胚胎学家沃尔夫提出的“渐成论”:在个体发育过程中,生物体的任何组织和器官逐渐形成。但这无法解释遗传变异的操纵者究竟是何物?

第一次提出了“遗传因子”(后被称作为基因)的概念是在1865年,奥地利遗传学家孟德尔阐述了他所发现的分离法则和自由组合法则,并认为这种“遗传因子”是决定遗传性状的物质基础,存在于细胞当中。

1909年,丹麦植物学家约翰逊用“基因”一词代替了孟德尔的“遗传因子”。基因从此便被看作是功能的基本单位、生物遗传变异的结构和生物性状的决定者。

1926年,美国遗传学家摩尔根发表了赫赫有名的《基因论》。通过大量实验,他和其他学者证明:基因是组成染色体的遗传单位,它在染色体上占有一定的位置和空间,呈直线排列。这样,就使孟德尔提出的有关遗传因子的抽象假说落实到具体的遗传物质——基因上,为后来研究基因结构和功能进一步奠定了理论基础。

即使这样,人们当时并不知道究竟基因是一种什么物质。直至20世纪40年代,当科学家认识了核酸,特别是脱氧核糖核酸(简称DNA),是一切生物的遗传物质时,基因一词才总算有了确切的内容。

1951年,科学家在实验室里研制出DNA结晶;

1952年,得到DNAX射线衍射图谱,发现进入细菌细胞后,病毒DNA可以复制出病毒颗粒……

有两件事情,在此期间是直接促进了DNA双螺旋结构的发现:一是美国加州大学森格尔教授发现了蛋白质分子的螺旋结构;二是在生物大分子结构研究中获得有效应用了X射线衍射技术,为之提供了决定性的实验依据。

美国科学家沃森与英国科学家克里克的合作,正是在这种科学背景和研究条件下,通过分析研究了大量X射线衍射材料,提出DNA的双螺旋结构模型,由此建立了遗传密码和模板学说。

此后围绕DNA的结构和作用继续开展研究,科学家们也取得了一系列的重大进展,并且于1961年成功破译了遗传密码,无可辩驳地证实了DNA双螺旋结构的正确性,从而使沃林、克里克同威尔金斯于1962年一起获得诺贝尔医学生理学奖。

生物大分子螺旋

虽然人类设计马路与建筑时都喜欢笔直的线条,但大自然并不赞同这种选择,而是更偏爱螺旋状的卷曲结构。决定生命形态的DNA结构、影响我们后天美丑性状的蛋白质结构,以及我们日常所需的食物的主要成分淀粉等,全部都是螺旋结构。

生物的大分子DNA、纤维素结构、蛋白质淀粉中,都存在螺旋结构。就连我们所熟知的包含着人体的遗传信息的遗传物质DNA,也是双螺旋结构。父系与母系在受精卵中的各一条链相结合,就产生了结合了二者信息的新生命。不过,双螺旋结构只是DNA最重要的一种结构,也可能形成其他结构。当双螺旋体的一部分解开时,就可以形成三螺旋或其他结构,而其中一条DNA链折叠了回去。

蛋白质中的螺旋与DNA的双螺旋结构相比,是由氨基酸经脱水组成的单链螺旋,它末端运动有较大的自由度,可以组成三圈螺旋,三圈螺旋还可以变成折叠的样子。在这种意义上,折叠可以说是螺旋的一种特殊形式。

人体中的蛋白质就是由折叠结构与螺旋复合而成的复杂结构。比如,胶原蛋白作为人体中重要的蛋白质,就是由三条肽链拧成“草绳状”三股螺旋结构,其中每条肽链自身也是螺旋结构。众所周知,蛋白质占人体的16%左右,而体内蛋白质的30%~40%是胶原蛋白,主要存在于骨骼、皮肤肌肉、内脏、牙齿与眼睛等处。

不仅仅是遗传物质和蛋白质,我们的主要食物淀粉和所穿棉衣物中的主要成分棉纤维,也大多都是螺旋结构。

螺旋生物体

不仅生物大分子,整个生物体的组成部分或生物体的形状,有时也可能是螺旋体的构型。大家常听说的的螺旋藻就是这样的一种生物,其名字的由来就是因为在显微镜下观察时形体呈螺旋状。

地球上最早出现的光合生物就是螺旋藻。研究表明,螺旋藻是有已被发现的所生物中营养成分最丰富、均衡、全面的海洋生物。它的由多糖类物质构成的细胞壁,极容易被人体所消化吸收,吸收率可达95%以上。此外,螺旋藻中还富含各种活性物质如胡萝卜素、亚麻酸和亚油酸等,能疏通血管、清除血脂和保持血管弹性,对防治心、脑血管疾病有很好的帮助作用。

幽门螺旋杆菌,它寄居在人体胃内,也是因呈杆状、螺旋形而得名的。对许多细菌胃液都具有很强的杀伤力,但是却奈何不了幽门螺旋杆菌。因为埋藏在胃壁表面黏膜下方的幽门螺旋杆菌,可以分泌一种能中和周围环境中强酸的物质;而且,幽门螺旋杆菌很爱对我们的免疫系统进行“挑衅”,经常刺激免疫系统发动初步的无情反击,从而导致发炎,使感染幽门螺旋杆菌的人常会出现没有症状的胃炎(即胃粘膜发炎)。在进入中年之后,人们会很容易得这些病,这都是拜幽门螺旋杆菌所赐。

上述这些生物体本身都呈螺旋状,不过有些生物还要通过螺旋形状来实现它们的独特功能。水黾之所以能在水面上行动自如,就是利用了其腿部特殊的微纳米螺旋结构效应,不管是狂风骤雨,还是在急速流动的水流中都不会沉没。其原理是在这些取向的微米刚毛和螺旋状纳米沟槽的缝隙内,可以有效地吸附空气,从而在其表面形成一层稳定的气膜,有效防止了水滴的浸润,从而表现出超强的疏水(即不浸水)特性。科学家对水黾腿部进行力学测量后发现:一条腿在水面的最大支持力,可以达到其身体总重量的15倍。

生命为何“偏爱”螺旋结构

通过上面的讲述我们可以得知,大自然中几乎到处都存在着螺旋。而许多在生物细胞中发现的微型结构都采用了这种螺旋构造,它是自然界最普遍的一种形状。

那么,为什么大自然会如此偏爱这种结构呢?科学家对此给出了合理的解释。

美国宾州大学的兰德尔·卡缅教授指出,从本质上来说,非常长的分子聚成螺旋结构在拥挤的细胞(如一个细胞里的DNA)中,是一个比较合理的方式。在细胞稠密而拥挤的环境中,长分子链经常采用的是规则的螺旋状构造。之所以这样构造,好处主要有2点:一是能使信息紧密地结合在里面;二是可以形成一个表面,使其他微粒与它在一定的间隔处相结合。比如,DNA的双螺旋结构允许进行DNA转录和修复。

通过一个模型卡缅教授成功解释了这个问题:将一根可随意变形、却不会断裂的管子浸入由坚硬球体组成的混合物中,管子就好比一个存在于十分拥挤的细胞空间中的一个分子。观察表明,U形结构的形成对于短小易变形的管子来说,所需的能量最小,空间也最少;而在几何学上,它的U形结构与螺旋结构最为相近。

卡缅由此指出,自然界能最佳地使用手中材料,分子中的螺旋结构就是一个例子。由于受到细胞内的空间局限,DNA采用了双螺旋结构,就像是因为公寓空间的局限而采用的螺旋梯设计一样。这就从数学上解释了生物大分子采取螺旋结构的原理。然而为什么生物体也以螺旋结构的形状存在呢?原因还有待于进一步的研究。

延伸阅读——认识基因工程

作为生物工程的一个重要分支,基因工程与细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。而基因工程就是指对基因在分子水平上进行操作的复杂技术,是通过体外重组后将外源基因导入受体细胞内,使这个基因在受体细胞内复制、转录、翻译表达的操作。基因工程是先用人为的方法提取出需要的某一供体生物遗传物质——DNA大分子,用适当的工具酶在离体条件下进行切割后,将它再与作为载体的DNA分子连接起来,然后一起与载体导入某一更易生长繁殖的受体细胞中,让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。

根据这个定义我们可以看出,基因工程有这么几个重要特征:

第一,在不同寄主生物中,外源核酸分子的繁殖能跨越天然的物种屏障,将任何一种生物的基因导入到新的生物体中,所以这种生物可以与原来生物毫无亲缘关系。这种优势是基因工程的第一个重要特征。

同类推荐
  • 地球的血液:江河湖泊

    地球的血液:江河湖泊

    在人类赖以生存的地球上,自然界亿万年的沧海桑田造就了无数令人震撼的自然奇观,它们在大自然浩瀚无际的舞台上演绎着地球不老的传奇。本书是一部以地理知识为题材的社科读物,内容新颖独特,并以图文并茂的方式展现给青少年读者,以激发他们学习地理的兴趣和愿望。
  • 谁会是下一个牛顿:最让人受启发的物理现象

    谁会是下一个牛顿:最让人受启发的物理现象

    本书主要内容包括:无处不在的力、怎样让溜冰鞋一直滑下去、苹果为什么不掉到天上去、人体重心揭秘、羽毛和铁块会同时落地吗、“不倒翁”不倒的秘密等。
  • 故事中的科学(人生解密)

    故事中的科学(人生解密)

    科学无处不在,在我们的周围,各类各样的事物中,都隐含着科学。一株花、一棵树、一滴水……一花一世界,一叶一菩提。无论是仰望星空、俯视大地,还是近观我们周遭咫尺器物,处处都可以发现科学原理蕴于其中。从生活中任何的小事物中都能发现科学的闪光。而现在,让我们在故事中去寻找科学。
  • 不可不知的万物简史

    不可不知的万物简史

    这是一部有关现代科学发展史的既通俗易懂又引人入胜的书,作者用清晰明了、幽默风趣的笔法,将宇宙大爆炸到人类文明发展进程中所发生的繁多妙趣横生的故事一一收入笔下。惊奇和感叹组成了本书,历历在目的天下万物组成了本书,益于人们了解大千世界的无穷奥妙,掌握万事万物的发展脉络。
  • 灵山秀水之间

    灵山秀水之间

    国家地理·神秘中国是一套以地域事件为单元散点透视、实地实拍、实证实录的图书,从地理人文风貌,到社会历史心态,有记录,有拍摄,有考察,有论证,从不同的角度和侧面,把历史之树的绚丽风采展示给大家。从社会生活的细节上,揭开历史的面纱,看一看神秘中国的精彩。每本书中围绕同一主题生发出的不同故事,就像几片相似的树叶,为中华历史的大树平添几抹生命的绿色。在这里,我们即将看到:秀丽的山川,古老的城镇,尘封的遗迹,神秘的陵寝;我们将接触到:奇石美玉,奇异建筑,珍贵遗产,传奇人物……
热门推荐
  • 天降钻石妻:男神的专属宝贝

    天降钻石妻:男神的专属宝贝

    他一掷千金,买了她三月自由。每天起早贪黑,整衣叠被,为他下厨洗手作羹汤。她怎么也不会想到,曾经衣食无忧的她,有一天竟会为了钱而卖身为奴。可他要她做的还不止这些!“我利子铭亏本生意不做,所以从今天起,你必须给我夜夜暖床!”他要的就是稳赚不赔,于是N年以后……某宝经常在半夜被某爹和某妈的嘿咻声吵醒,于是某天缠着某妈:“妈咪妈咪,我要和你比赛拉嘘嘘,如果我赢了,你就答应我今晚让爹地出去睡!”某妈面抽:“宝贝,尿尿还能怎么比?”某宝:“我们站着尿,看谁尿得远!”某妈:“……”
  • 中华美德3

    中华美德3

    在故事中吸取营养,让中华美德薪火相传,让孩子成为体现时代进步要求的新道德规范的实践者。给儿童最好的教育让他们知道我们中华民族几千年来的传统文化精髓。
  • 逆世重生:倾城杀手妃

    逆世重生:倾城杀手妃

    黑白两重身份,白天,她是王府最卑贱的丫鬟,晚上,她是春风楼里妖娆美艳的舞姬。她是京城第一丑女,因为脸上有一个月形的红色胎记。而春风楼的舞姬千水月,眉心一颗朱砂美人痣,一块面纱,遮住了她的倾城绝美。他武功超绝,智慧无双,却冷漠腹黑。他残忍、高傲。凡是他们出动,必定鲜血横流,血染白衣。她冷血、无情,却不知,彼此已经占据了对方的整颗心。推荐新文《狼妃有毒:腹黑鬼帝心尖宠》连载更新中……【一对一宠文,甜腻歪】
  • 法伴人生

    法伴人生

    本书结合相应的法律条令,用案例分析作具体的讲解分析,并展示相应的法律知识要点。
  • 天价契约

    天价契约

    “邵北寒是你男朋友?”沈桐的背被迫贴在墙上,顾梓风的眼睛危险的眯起。某女诚实的点点头。“男朋友?我同意了吗?”某男笑得轻浮。某女放肆一笑,伸手探了探他的额头,“你没病吧,我交男朋友需要得到你的批准?”“你忘了你签下的是什么?你忘了你要赔上的生生世世?跟他走?你想好了,信不信我把飞机轰下来?”他的原则,只要得到,绝不放掉。“你……狠!”不做无谓的争吵,要逆天,先认怂……柔弱小羊变成狼!拍拍手,N次,出逃成功!某男掀翻了面前的桌子,怒火滔天,喂不熟的白眼狼……
  • 意外重生小心混混女

    意外重生小心混混女

    一个馒头可以引发一场血案,一个馒头也可以成就一代女恶棍。她是天符井街最有名有可恨的女混混,她混吃,混喝,混自己。她打架不要命,抢钱不要脸。反正她就是坏,她也喜欢别人说她坏。直到一次烂好心,她救人却是挂了自己,却在醒来时,穿越到了一个200多斤的肥女身上,当狠毒遇到愚蠢,当肥胖遇到减肥,当余珠遇到鱼柱,当女混混变成花痴,当银河落下一滴银泪,请相信,这个世界上,没有什么肥是减不下去的,也没有什么事是不可能的。
  • 赎情总裁

    赎情总裁

    【简介】当了他三年的情妇,最终难逃被抛弃的命运。原本要坚定守护的心,也遗失在了这个无情的男人身上。幸好,她还有一点点的自尊和骄傲。带着一颗破碎的心,她离开了这个伤心的城市!*五年后,一个名动世界的设计师衣锦还乡。再次踏上这片熟悉而神伤的土地,她是否还能保持着波澜不惊的心?*夏雨薇,一个当了他三年情妇的女人。她微笑的样子,哭泣的样子.该死的!直到她离开后,他忽然觉得心里空了一片,且是再也补不回来的!为了填补她离去后的空白,他转身从一个冷漠无情的人变成了花花公子,夜夜留恋在花丛中,可心里那份失落越来越大!等到再次见到她时,她却已是世界知名的设计师,身边有了位白马王子,还带着一个三岁大的小女孩。该死的!他只能眼睁睁的看着幸福的一家三口。直到.他无意之中听到的一个秘密~这次,无论如何,他都不会再放手!一个俗气的故事,只想阐述一段动人的感情!&&&&&&&&&&&&&&&&&&&&&&&&&&&&&【推荐好友儛亦柔筝的文:】×××××××××××亲们,迷蓝亲亲为《赎情》建了个群,有兴趣的可以加入讨论!谢谢迷蓝亲亲~~群号码:29155097(已满)新群:20200177--------------------------------------*分割线*--------------------------------------------《爱上古板老婆》她是平凡的都市白领,性格古板他是站在世界顶端的富豪子弟...他们却奇异的有了交集。婚后再相爱的古老模式再次重演。平凡的她要如何在豪门世家立足面对苛刻的婆婆,她古板的性格又该如何应对?面对彬彬有礼的丈夫,她又该何去何从?长到二十八岁,在嫁给他之后,爱上他之后,她才懂得,什么是最温柔的残忍!
  • 温州人和你想的不一样

    温州人和你想的不一样

    本书列举了温州人发财致富、成为中国人中最具商业智慧的一群人的成功事例,告诉读者温州人和你不一样的眼光、和你不一样的胆识、和你不一样的人脉、和你不一样的创意、和你不一样的手段、和你不一样的品质等。
  • 东宫有本难念的经

    东宫有本难念的经

    宝庆十九年春,大佑国皇太子大婚,大将军之女入主东宫。一个不是淑女的将门千金遭遇一个不是文韬武略的中庸太子,到底是佳偶天成,还是冤家路窄?成婚一年不足,太子忽然休妻。迷影重重,生死茫茫,这样一来,还是不是大团圆结局?
  • 福缘满田

    福缘满田

    白富美算什么?没人要又怎样!蓝衣衣穿越到一穷二白、家徒四壁的农村家庭,照样白手起家发家致富。看农家女屌丝华丽变身骄傲女神!绝招在此:玩点新花样,想点新玩意儿,做点新奇事儿,大家平日里不敢想的,她都一一付诸实践。什么?冬天里种夏季菜?还种成了?这怎么可能?还有什么?西域里昂贵的葡萄酒,她那里有很多?这神马状况!啥?还有?竟然还有?噢天啊……那谁,你不是嫌姐穷吗?姐现在有钱了,绫罗绸缎加一身,闪瞎你的眼。还有那谁,你不是不要自己吗?干吗哈巴狗的绕在姐身边,姐可没那么恶趣味喜欢哈巴狗。那谁谁谁,原来你们没有瞧不起过姐?原来你们也想跟着姐干?算了,姐大人有大量,不跟你们计较,以后带你们幸福奔小康就是了。最后那谁,你竟然是喜欢姐的?oh,mygod!他敛眉看着她,眼底深处,是浓浓的情意。他向她表白,她有那么惊讶吗?她不是也喜欢他的吗?