登陆注册
2534000000003

第3章 真空真的是空的吗

1654年,科学家葛利克做过一个名垂科学史的实验。他用铜精制了两个大半球,并将它们对接密封起来,用他自己发明的抽气机将球内空气抽出,用16匹马背向对拉两半球,马最终竭尽全力才拉开。这表明我们周围并非什么都没有,而是充满空气,它对物体施加压力(球内空气密度因抽气远小地球外的,这导致球外压力远大于球内的)。球内经抽气后的空间叫做真空。

真空其实不空。直至今天,科学家都不能完全排除甚至某一小范围内的空气。电视机显像管需要高真空才能保证图像清晰,其内真空度达到几十亿分之一个大气压,即其内1立方厘米大小的空间有好几百亿个空气分子。在高能加速器上,为防止加速的基本粒子与管道中的空气分子碰撞而损失能量,需要管道保持几亿亿分之一个大气压的超高真空,即使在这样的空间,1立方厘米内还有近千个空气分子。太空实验室是高度真空的,每立方厘米的空间也有几个空气分子。

上述以抽出空气方式得到的真空叫做技术真空,它并不空。科学家称技术真空的极限,即完全没有任何实物粒子存在的真空,为“物理真空”。它非但不空,而且极为复杂。按照狄拉克的观点,它是一个填满了负能电子的海洋。20世纪20年代,英国物理学家狄拉克结合狭义相对论和量子力学,建立了一个描述电子运动的方程。它一方面十分正确地描述了电子运动,另一方面又预言了科学家当时尚未认识的负能量电子。自然界一切物体的能量总是正的。高山流水有(正)能量,能冲刷堤岸,推动机器。高速运动电子有(正)能量,能使电视荧光屏发光。电子具有负能量,就意味着加速它时,它反而减速;向左推它时,它向右运动。而且电子总处于放能过程中,如同高山流水总往低处流一样。电子的能量将越来越负,高山流水最终还只能流到大海,电子能量则将负至无穷。这意味着一切宏观的物体均将解体。这显然是荒谬绝伦的。按照量子力学,两个电子不能处在完全相同的状态上,就如一个座位通常只能坐一人不能坐二人一样。狄拉克认为,所有负能状态通常是“满员”的,被无穷多的负能电子占据。因此,正能电子其实是不能永无止境地发射能量的,其能量甚至不能降至零。这意味着,即使一个没有任何实物粒子的空间,也是一个充满无穷多个负能电子的大海。一个负能电子可通过吸收足够多的能量而转变为具有正能量的普通电子,尔后在负电子海洋中留下一个空穴,即少了一份负能量和一个负电子,这相当于给了海洋一个带正电荷和正能量的反电子(或正电子)。1932年,美国物理学家安德逊果然找到了它,狄拉克的理论也终为大家所接受。质子和中子也有负能反粒子,物理真空还可分别由它们(负能质子或负能中子)填充。在物理真空中,正、反粒子对可不断地产生、消失或消失后又产生,它们生存时间短,瞬息万变,迄今还未观测到,称为虚粒子。它们在一定条件下可产生一些物理效应。例如,一个重原子核周围的虚核子(反质子和反中子)在强电场作用下,会排列起来,出现正负极性,称为真空极化,这将影响核外电子的分布,导致原子核结构改变。

粒子(如电子)与反粒子(如电子)碰到一起,变成一束光,反之,一束强光也可从物理真空中打出粒子与反粒子。质子与中子等并非终极基本粒子,而是由更基本的“夸克”组成。夸克有六种“味”,即上夸克、下夸克、粲夸克、奇异夸克、顶夸克和底夸克。

它们不能脱离这些粒子而单独存在,它们似乎被一种强大的力囚禁了起来。按照“口袋模型”(1974),粒子就如物理真空中运动的口袋,口袋里装有夸克,夸克间存在很微弱的相互作用,由一种叫做胶子的粒子传递。粒子衰变或破碎为两种或两种以上的其它粒子时,可看作一个口袋变成两个或两个以上的口袋。同样,两个或两个以上的粒子聚合成一个大粒子,就相当于多个口袋合成一个大口袋。于是,在破碎和聚合过程中永远找不到单个夸克。口袋的分解或聚合就如液体(如肥皂水)中气泡的分解和合成。气泡内气体分子是自由运动的,大气泡可以分解成小气泡,小气泡也可合并成大气泡。若基本粒子如小气泡,则物理真空就如液体。这种液体性质独特,它只能一对对地产生气泡,或一对对地消失。按照口袋模型,口袋里面(或气泡里面)叫做简单真空,外面是物理真空,这形成真空的两种“相”。物理真空在一定条件下可变成简单真空,就如日常生活中三相间的转变一样。固体受热变液体,液体受热变气体,这些只需几百度或成千上万度就可发生。温度高达几十万、几百万或几千万度时,气体原子就要解体,变成叫做离子的带电粒子。同样,温度足够高时,口袋也将解体,质子、中子等基本粒子不再是基本的物质形式,它们将成一锅由夸克和胶子组成的高温粥,称为夸克-胶子等离子体,物理真空也就成了简单真空。

计算机模拟实验表明,物理真空熔化为简单真空需2万亿度以上的高温,这个熔化的物理真空也叫“熔融真空”。重原子核可以包含上百个质子和中子,其内空间正常状态下是个很好的物理真空。科学家希望通过碰撞来加热它,使其熔化,获得简单真空。目前在高能实验室中,质子和原子核间的碰撞能量已达几百兆电子伏特,这已相当于将原子核(局部)加热到了几万亿度,但由于质子(与原子核比较)太小,只将原子核穿了一个洞,并未将整个原子核熔化。科学家正在设法利用重原子核间的碰撞来实现熔融真空。熔融真空实验之所以重要,不仅在于它能直接检验关于基本粒子结构的一些理论假设,还在于其实验结果可能有助于科学家理解宇宙的早期演化。

按照大爆炸模型,我们的宇宙始于约200亿年前的一次巨大爆炸。爆炸发生的一瞬间,温度远远超过熔融真空所需温度,故早期的宇宙应是夸克-胶子等离子体。随着宇宙的膨胀,温度逐渐降低,简单真空转化过程中,应存在由50个或以上的夸克所组成的物质结构(通常的粒子只包含2个或3个夸克)。熔融真空实验是对这种早期宇宙演化的模拟,是一种理解宇宙演化的重要手段。为测量真空熔化时放出的大量粒子,需在非常小的锥体内同时测量上千个粒子。迄今还没有人能够在一次碰撞事例中测量上百个粒子。科学家即使使用他们最娴熟的乳胶探测器,尽管其分辨率很高,也无能为力,它也不适宜于探测高能加速实验中的夸克-胶子等离子体。这些困难经常困扰着科学家并激励他们去解决。

同类推荐
  • 生活中的科学(人生解密)

    生活中的科学(人生解密)

    本书通过发生在少年儿童身边的生活小故事,巧妙地引出一个个科学现象或原理,生动解答少年儿童心目中的种种疑问。读者朋友不仅可学习知识,还能掌握藏于其背后的科学常识,这对于培养青少年的探索钻研精神无疑会有莫大的帮助。
  • 非常同桌我的同桌我做主

    非常同桌我的同桌我做主

    陆飞、欧阳子、李小奇……好动、好话话、好做小动作的男生们,大丽、李小白……可爱、活泼、聪明的小女生们,他们生活学习在一起,会发生哪些好玩的事情呢? 读者朋友们快来看看这本《我的同桌我做主》,书里收录了《乾坤大挪 “椅”》、《别那么大声》、《庄半仙的幸运日》等好玩的故事。
  • 后天大后天

    后天大后天

    我们生活在何其神奇的一个小世界。事物与事物,就如同碗豆与有萝卜,如此不同,又如此相似。就好比雷声和彩虹;作家和画家;垃圾车和洒水车;打呼噜的猫咪和小碎花的窗帘。而每一个小孩心中,都有一个长大的愿望;每一个大人的心中,都有一个童心未泯的理想。
  • 东湾村的小伙伴们

    东湾村的小伙伴们

    这一年,山子又长高了一截,他上了五年级。在他的东湾村,有慈爱的父母,善良的乡亲,淳朴的风情,充满童趣的校园生活……这段时间里,山子经历了很多事:和老歪的遭遇战、闯了一次大祸、拜师学武、养了一只“饿死鬼投胎”的狗羊……东湾村的孩子虽然在物质生活上艰辛不易,但山子和他的小伙伴们人不缺少快乐。
  • 青少年必知的100种地理知识

    青少年必知的100种地理知识

    地球是人类共有的家园,是一个充满生机的世界。作为地球家园的一员,我们应该知道"家事",才能把"家"营造得更加温馨、和谐、幸福、美好。
热门推荐
  • 宫

    “那年你对我说,人生最难的事情是‘坚持’,你还说,如果我有灵魄,就来到你身边,生为男子就助你夺天下,生为女子就成为你的妻。这一世,我是男子,帮你得到了安稳的天下,下一世,我要成为你的妻,和你比翼双飞……”
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 幻黛之红楼情劫

    幻黛之红楼情劫

    (引言)花月春风浮生梦短,一生一世一对璧人。血染江山万里如画,黛颦红袖笑看征尘。玉笛横吹,奏响八音引丹凤;银袍劲舞,挥动长剑斩邪佞。黛颦添香,撩乱溶心锁春梦;红袖拂琴,惊碎青岚余芳魂。开辟鸿蒙,谁为情种?都只为那风月情浓。趁着这奈何天、伤怀日,重新排演一段荡气回肠的红楼梦!林黛玉貌若天仙,古今无双,胜西施之柔,夺貂蝉之媚,如此旷世佳人,怎能芳华早逝,弃读者于不顾?且看林黛玉在《幻黛》中如何解读郎情妾意,如何挥洒快意恩仇!郑重承诺:没有NP,温馨小虐,绝不烂尾,保证质量。推荐红楼好文:雨若菲彤《红楼之玉溶潇湘》燕歌《红楼之水草缘》飒岚《红楼之水梦情缘》玉冰焰《黛玉新说》步行街《红楼之溶宠玉心》龙游《红楼之玉倾天下》天边天蓝《红楼梦中梦红楼》心若芷萱《梦红楼之痴心宠玉》长河晨日《红楼梦断之大漠潇湘》~荷处是人家~172701817,欢迎各位读者朋友、作者朋友加入交流!
  • 东宫有本难念的经

    东宫有本难念的经

    宝庆十九年春,大佑国皇太子大婚,大将军之女入主东宫。一个不是淑女的将门千金遭遇一个不是文韬武略的中庸太子,到底是佳偶天成,还是冤家路窄?成婚一年不足,太子忽然休妻。迷影重重,生死茫茫,这样一来,还是不是大团圆结局?
  • 重生之首席魔女

    重生之首席魔女

    一朝入道,不成佛便成魔!  前世,她是失去利用价值的“弃子”,一场背叛的杀戮,再睁开眼,恍如南柯一梦,她重生回到了二十年前。  这一世,她依旧被遗弃的彻底,然,天下人都可以负她,但,她也会让所有负她的人付出代价。  她,季苏菲,重活一世,绝对不会再重蹈覆辙,没有人可以随即践踏她的尊严,她会用自己的力量让所有人俯首,她要活出属于她一个人的风采。  季苏菲钓鱼,随身空间到手,从此她拥有了一个巨大的隐形军火库;  和死神做交易,得到一只制裁者的手,指尖蓝色的火焰主宰着他人的生死;  撒旦的邀请:“我...
  • 名门毒医

    名门毒医

    作为精通岐黄之术又擅长用毒的的现代女医生,方青罗表示:姐从来就不是吃素的!so重生古代,身世复杂又如何?且看她如何经营药田,打理农庄,玩转名门,“毒”来“毒”往,逍遥自在。=====某咔新书《带着萌宝去种田》已发布,种田甜文,绝对值得一读,求围观!穿越成为大了肚子的弃妇,白若竹决定靠山吃山靠水吃水,靠空间吃空间,带着萌宝种田经商奔小康。可是一个两个都想给她家宝宝做爹,你们够资格吗?“娘亲,我想有个爹嘛。”“娘还在观察,观察一下。”---新书《福妻跃农门》发布,求收藏求圈养~
  • 感动小学生故事(大全集)

    感动小学生故事(大全集)

    本书精选200多个感动心灵的故事,它们涵盖了金色的童年、成长的滋味、父爱母爱、师生情谊、纯洁友情、保护环境、爱护动物等内容。在每则故事后面,都配有平实生动、明白浅近的赏析点评,方便读者领会、启迪和感悟。通过一个个感同身受的故事,让小学生体会“真”的流露,“善”的迸发,“美”的呈现,进而学会感动,懂得感恩!
  • 武帝丹神

    武帝丹神

    一代丹道大宗师卫长风,在炼制九劫生死丹的时候遭遇大劫身死丹灭,却不想千年之后在一位同名同姓的卑微少年身上夺舍重生!这一世,他要填补前生所有的遗憾!这一世,他要重炼丹神,再成无上武帝!这一世,他要傲视万古大陆,笑看风起云涌!
  • 东宫有本难念的经

    东宫有本难念的经

    宝庆十九年春,大佑国皇太子大婚,大将军之女入主东宫。一个不是淑女的将门千金遭遇一个不是文韬武略的中庸太子,到底是佳偶天成,还是冤家路窄?成婚一年不足,太子忽然休妻。迷影重重,生死茫茫,这样一来,还是不是大团圆结局?
  • 绿茵锋狂

    绿茵锋狂

    PS:新书《野兽球王科斯塔》已发布,欢迎大家追读! 曾经中国篮坛上最耀眼的新星——李玉明在遭遇“断手”后,果断选择走上足球的道路。一个篮球天才是如何从中国迅速踢向欧洲五大联赛的?亲情,友情,爱情,在一个球员的职业生涯中又会充当着一个怎样的角色呢?欢迎大家来《绿茵锋狂》中寻找答案。