登陆注册
2532300000020

第20章 “1+1”

1742年6月7日,当时还是中学教师的哥德巴赫,写信给当时侨居俄国彼得堡的数学家欧拉一封信,问道:“是否任何不小于6的偶数,均可表为两个奇素数之和?”因为哥德巴赫喜欢搞拆数游戏。20几天后,欧拉复信写道:“任何大于6的偶数,都是两个奇素数之和。这一猜想,虽然我还不能证明它,但是我确信无疑地认为这是完全正确的定理。”这就是一直未被世人彻底解决的着名的哥德巴赫猜想,也称哥德巴赫—欧拉猜想。数学家简称这个问题为(1,1),或“1+1”。命题简述为:

(A)每一个≥6的偶数都可表为两个奇素数之和;

(B)每一个≥9的奇数都可表为三个奇素数之和。

显然,命题(B)是(A)的推论。因为任何一个奇数,如减掉一个奇素数,当然就是偶数了。此时如能证明命题(A),当然命题(B)就得证了。但是,这两个问题没有可逆性。命题(B)在本世纪30年代,前苏联科学家依·维诺格拉朵夫创造了一系列估计指数和重要方法,从而使他在1937年,间接地证明了命题(B)。

1930年,会尼列尔曼用密率法证明了每一个自然数可以表为不超过k个素数的和,这时K是一个固定的自然数。开始定出的k=2+1010,很快就有人把它降为k=69。利用密率法得到的最好结果是k=18,即每一个自然数可以表为≤18个素数的和。这里说的每一个自然数,不是充分大的自然数。这是密率法独具的优点,用其他方法(圆法和筛法)只能得出关于充分大的自然数的结论。

1937年,前苏联数学家维纳格拉道夫用圆法证明了每个充分大的奇素等于3个素数的和。随后有人证明这里的“充分大”可用“>eC16·038”来代替。这个数超过400万位,是一个非常巨大的数。现在这个常数已经大大缩小,但仍然是一个很可观的大数。

在240多年的漫长的岁月里,有人对哥德巴赫猜想进行了大量验算工作,有人曾经验算过偶数x≤5×188,即x在5亿以内,哥德巴赫猜想都是对的。

在此期间,有些人更想过一些办法,例如折叠法,他们将自然数比着很长的梳子上的各个齿,先将代表复合数的齿全部掰掉,剩下来的,当然都是素数。然后再把同样的梳子,颠倒过来对上,如果梳子上原有的齿为偶数x个,这样将1对着x-1,3对着x-3,……,p对着x-p,(1≤p≤x-1)。因为在x较大时,不能证明是否还存在齿对着齿情况,故问题没有解决。

此法的缺点是:先将代表复合数的齿全掰掉了。因为素数的存在是微弱地依附着较小素数及其倍数的复合数,而这点儿微弱的痕迹也给掰掉了。而这个问题,又不能从概率的办法解决,因为素数不是正态分析,而是一个确定的问题。所以他们就将x确定为一定值,再每两个齿一错位。这样,一个用有限问题企图解决无限问题,当然是极其困难的。尽管如此,仍有一些人在艰苦地攀登。所以后来,他们把大于某一个很大的数(例如k0=e49c)偶数,叫做大偶数,再将任一大偶数N(N>K0)写成自然数N1与N2之和,即N=N1+N2。而N1与N2里素因数这个数,分别不多于s与t个。故简记为(s,t),或写成带引号的加法:“s+t”,此时N1与N2可以叫做殆(接近)素数,然后将s与t值逐步缩小。如果一旦将s,t均计算到1,那时再来证明5×108<N≤e49 c时,(1,1)成立。这样,(1,1)问题即解决了。但是,至今没有最后解决。现将当前世界取得的名次结果,列表如下:

(s,t)年代结果获得者国别(9,9)1920布龙挪威(7,7)1924雷特马赫德(6,6)1932埃司特曼英(5,7),(4,9)1937蕾西意(3,15),(2,366)1937蕾西(5,5)1938布赫夕太勒前苏联(4,4)1940布赫夕太勒(1,C很大)1948瑞尼匈(3,4)1956王元中(3,3),(2,3)1957王元(1,5)1962潘承洞中〖3〗巴尔巴恩〖4〗前苏联(1,4)1962王元(1,4)1963潘承洞〖3〗巴尔巴恩(1,3)1963布赫夕太勒〖3〗(小)维诺格拉朵夫前苏联〖3〗波皮里意(1,2)1973陈景润中按照华林原来的猜测,g(2)=4,g(3)=9,g(4)=19。一般地猜测:

g(k)=2k+〔(+)k〕-2(1)

其中〔x〕表示x的整数部分。

经过许多数学家的努力,除去k=4外,(1)已被证明,其中g(5)=37是我国科学家陈景润于1964年证明的。

对于k=4,目前已经证明:

19≤g(4)≤21,

并且在n<10310或n>101409时,n可以表示为19个4次方的和。这已经接近于预期的目标g(4)=19了。

人们还发现,当自然数充分大时,可以将它表为G(k)个K次幂的和,这里G(k)≤g(k)。实际上,G(k)比g(k)小得多(当k大的时候)。目前仅仅知道G(2)=4,G(4)=19。对G(k)进行估计是一个很艰难的问题。

同类推荐
  • 开启青少年智慧的世界军事故事

    开启青少年智慧的世界军事故事

    本书为青少年朋友精心挑选了世界军事故事,每则故事都浓缩了深刻的人生哲理,蕴藏着丰富的生活智慧,每则故事后都配有“精彩哲思”、“慧语箴言”,对故事的内涵进行挖掘和阐述,帮助青少年领悟生活真谛、人生哲理。精彩的故事,生动的文字,配上简洁大方的版式设计,让青少年在轻松的阅读氛围中,学到生活哲理,汲取人生智慧。
  • 告诉青少年聪慧机敏的机智故事

    告诉青少年聪慧机敏的机智故事

    《告诉青少年聪慧机敏的机智故事》精心选取了很多古今中外流传广、给人启迪的机智故事,并且每个故事的结尾都附有精彩的点评。这些形式不拘的小故事中常常闪耀着智慧的光芒,爆发出机智的火花,有着深刻的寓意。
  • 文化探谜

    文化探谜

    本套全书全面而系统地介绍了中小学生各科知识的难解之谜,集知识性、趣味性、新奇性、疑问性与科普性于一体,深入浅出,生动可读,通俗易懂,目的是使广大中小学生在兴味盎然地领略百科知识难解之谜和科学技术的同时,能够加深思考,启迪智慧,开阔视野……
  • 你不可不知的历史典故

    你不可不知的历史典故

    历史当然有用,以古鉴今,读史明智。我为什么反复说没用呢?因为我们这个民族现在的功利性太强了。功能说得太多,难免庸俗化……
  • 求变就是求赢

    求变就是求赢

    当你面对不断变化发展且竞争越来越激烈的现代社会,想有所成就,却感觉迷茫无助之时该如何选择?在进与退、输与赢的关口,你当然会选择“进”与“赢”。而本书题为《求变就是求赢》,就是为你指出想赢就必须求变这一成功的先决条件。本书从求变与求赢的紧密联系、求变的重要性、变的方式、变的途径等各方面,辅以古今中外成功人士的范例,细致分析指明如何追求到“变”这一重要的社会生存技能,为你释疑解惑,拓展成功的思路,打开胜利的大门,让你顺利走向“赢”的彼岸。
热门推荐
  • 另眼看三国

    另眼看三国

    本书包括三国时期的政治婚姻、“三让徐州”是怎么回事、话说白帝城托孤、关于“空城计”等,从新颖和现代的视角研究了名著中的诸多典故。
  • 傻子王爷无情妃

    傻子王爷无情妃

    一只毒蝎子,彻底断送了她年轻的生命!别人只知道,那个软弱没主见的女人被迫嫁给一个痴傻呆闷的七皇子。殊不知,她早已不再是“她”!面对痴傻只会憨笑的美男,她气愤难填!你傻,本美女就医好你,谁知医好后,遭到嫌弃,却换来一纸休书,气愤之下,她恨不得与他同归于尽……
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 少年心事当拿云

    少年心事当拿云

    本书收录的文章,行文风格不同于死板的作文而有类似青春小说的特色。幻想类小说和纯爱言情小说。写实题材主要涉及校园生活、初高中生在友情爱情亲情方面的情感体验;虚构题材主要是以现实世界、游戏世界、架空历史和超时空为背景的纯爱小说。
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 罪全书1

    罪全书1

    本书根据真实案例改编而成,涉案地名人名均为化名。十起恐怖凶杀案,就发生在我们身边,每一个都是曾被媒体严密封锁,当局讳莫如深的奇案大案。四个超级警察,各怀绝技,从全国警察队伍中挑选而出,组成中国特案组,对各地发生的特大罪案进行侦破。此文中十起特大案件都是首次公布内幕,每一案都会颠覆你对人性的认知,让你不寒而栗,也许读完本书,你真的会相信人性本恶。
  • 引发学生奇思妙想的创新故事

    引发学生奇思妙想的创新故事

    以及生活中的新观念、新方法。每个故事皆充满智慧,本书精心挑选了100个寓意深刻、耐人寻味的创新故事,体现创意,给人启迪;每个故事配有精彩独到的点评,内容涉及古今中外的发明创造,挖掘故事深层的智慧,揭示创新的内涵和方法
  • 领导艺术36计

    领导艺术36计

    毫无疑问,没有人希望自己在失败和平庸中度过自己的一生。也没有人不渴望自己能在一方舞台上纵横驰骋,成就一番或大或小的事业。但是现实生活却是这样的:有的人成功了,有的人失败了,而有的人却一生平庸!那么究竟是什么决定了我们人生的不同呢?人生成败的关键因素又是什么呢?是家庭背景吗?有的人因出身显贵而平步青云,有的人虽出身低贱也步步高升,可见家庭背景不是成功的关键因素。是经济实力吗?有的人从大富起步而成为巨富,有的人白手起家而成为巨富,可见经济实力不是成功的关键因素。是才华学问吗?有的人学富五车而功成名就,有的人识字不多而功成名就,可见才华学问也不是成功的关键因素。是勤奋努力吗?
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。