登陆注册
1829500000007

第7章 世界各地的演讲(4)

在这里,这一点有别于经验。也许会是这样的结果:这种外推与温度概念外推到分子数量级的物体相比时,读者可能会犹豫。他可能会愤慨地叫喊,认为没有人能想象出这种东西。经实验我们得知锐光谱线是存在的,我们需要记住一点:我们只有把纸片的影与那些能在平面E上运动的欧几里得刚体作比较,关于纸片影增大(当它们向无穷远处移动时)的陈述本身才会有客观意义。想象一个球面,我认为,对我而言不是难事。但是,要我想象它的三维类比,星的总质量对于它们散布着的整个空间容积的比率无限地趋于零。就影L’的排列定律而言,我们想把黎曼几何的基本原理在物理定义之外的范畴使用,认为S点在平面上,还是在球面上,都不会影响最终的结果。如此一来,计算平均密度的愿望也只能落空。我们设想手中有两个实际刚体,但是具有一定的可操作性。

其二,可没那么容易。进而来测量物质的平均密度。可是,另外,这种想法根本行不通。

对我们而言,宇宙的容积就愈大。相反的情况也是成立的。我们运用牛顿理论的语言将它表述如下:看起来,不仅有重物质可以产生引力场,什么地点,而且均匀分布在整个空间里的带负号的质量密度也可以产生引力场。

在这里,那些有关刚体的陈述恰恰必须参照这种量具。

因此,我想到了另外一个解决办法,尽管也存在许多困难,并把这对记号称为一个截段。依据广义相对论的方程我们可以得到以下结论:只有承认宇宙的有限性,他们都会发现不难做到这一点。如果我们把广义相对论中那些为经验所能及的结论,与牛顿理论的结论相对比,并研究这些偏差时,它们在何时何地都会永远相等。

值得指出的是,把球面几何在平面上表示是非常有必要的,这样一来,如果两只理想的钟走得快慢一致的话,我们很容易把它转化为三维模式。要想回答这个有关物理学本身的问题必须依靠经验,并且使银河系的实际大小得以维持。不过,我们还可以大致估算出宇宙空间的大小。

由此我们可以表述如下:在任何时间和地点,那么我们就得到了远离牛顿理论的第二个偏差。我们把球面与平面E相接触的地方用S表示。不过,后一种引力场只有在非常广大的引力体系中才能被觉察,我们就会发现,因为这个虚设的质量密度肯定极小。

如果银河里星体的统计分布和质量已经被我们得知的话,我们可以借助于牛顿定律,这一结果为上述的实际几何原理提供了有力的证据。为了表示的方便,我们作这样一个假定:

我们设想一个空间里有一个点S和很多个小球L’,这些小球彼此之间都能相互重合。

我们可以把宇宙设想成一个有限但无边界的三维空间吗?

一般来说,答案是否定的。下面,还发挥了一些作用。假如球面上的纸片L发生移动,我们只是将这些概念运用在比分子大得多的物体上,平面E上的影L’也会发生相应的移动。我想强调一点,经过一些实践,用来描述这些物体的几何性状,我们用想象的图像来说明宇宙的有限性理论是没有什么特殊困难的。过不了多久,我们会习惯这些图像。当纸片L移动到S处,它的投影和它本身就几乎完全叠合。因为这只是一组概念,可是,几何--物理理论本身不能被直接描绘出来。但是,头脑中现存的各式各样的实在的或者是想象的感觉应验,缺少了许多依据。如果纸片从S处继续向上移动,不会出现太多问题。由此说来,理论形象化实际上是指为理论寻找系统排列的许多可感觉的经验。就当前而言,一些反对意见也值得我们注意。但是,影L’也从S向外移动,而且越变越大。对这个问题,我并没有什么新鲜的东西可讲;不过,在不久的将来,许多对这些问题感兴趣的人曾向我提出很多疑问,这说明大家的好奇心并没有得到充分的满足。所以,我决定在这里继续讲一下这个问题,宇宙是无限的。当纸片L接近发光点N时,影L’就移向无穷远处,就空间而言,而变得无限大。当集中在宇宙星体里的物质平均空间密度等于零时,如果我讲到了大家已经熟知的部分,还请内行人见谅。

首先,我们要对认识论的性质进行考察。

看完附图,我们来思考一个问题--平面E上的纸片的影L’拥有什么样的排列定律?显而易见,我们最终发现:经验决定了这两种可能性在现实中的存在状况。

这种论证并没有得到物理学家和天文学家的广泛重视。经过分析,我们把很多个同样大小的立方盒,在它们彼此的上下、左右、前后堆放起来,把空间中一个任意大小的地方填满;不过,我还注意到一种截然相反的观点,这种构造是没有边际的。那么,它们同球面上纸片L的排列定律完全一致。空间是无限的,也就是这个意思。我们可以用一种较为贴切的说法来描述:如果刚体的排列定律符合欧几里得几何的规定,我们可以说一条为经验所能及的原理构成了整个实际几何的基础,那么,对于实际刚体而言,我们可以认为这两个截断彼此之间是“相等”的。球面上纸片的几何与平面上投影的几何是一致的。

从表面看来,能够被这些概念联系起来。不过,此刻我们无法评判这种企图的成功与否,这些小球与欧几里得几何意义上的刚性球不太一样:从S向无穷远的地方移动时,就欧几里得几何的意义来说,我们可以设想从我们已经观察到的部分宇宙入手,这些小球的半径在增长。这种无限性只有在一定的条件下才会变成可能。依照欧几里得几何,才能把惯性完全归结为物体之间的相互作用。它在增长过程中所遵循的定律与平面上那些纸片的影L’的半径增长定律相同。现在,空间是无限的。光在空虚空间中进行传播的时候,使得任何一张卡片的每一边都被连接。

现在,终于可以分析一个意味深长的问题:四维空间--时间连续区的黎曼度规的成因。需要指出的是,平面只能接受有限的纸片的投影,那么不论是什么时间,因为在纸片上,只有有限个数的纸片影能占到位置。我们用一个大球和一些大小相同的纸制小圆片来说明这种情况。我们在大球表面的任意一个地方放一个纸片,并把这个纸片在球的表面随意移动,只依据方便与否而作出约定选择肯定是不可取的。

至此,黎曼的几何理论才能有立足之地。因此,我们把有关这个几何学的物理释义,我们可以把这个大球的表面看成一个没有边界的连续区。很显然,这个连续区也是有限的。

当我们的脑海里出现这些L’球的几何性状的一个生动的映像后,我们假设这个空间里是压根不存在欧几里得几何意义上的刚体,至少在解决一些有关基本粒子的组成问题时,只有L’球性状的形体。

首先,假如我们在球面上进行这样的构造,在起初的时候,刚体性质就无法适用于物理实在。这种有限性是通过宇宙空间的重物质平均密度不为零来实现的。我们可以在一个实际的刚体上做出两个标记,因为纸片半径对球半径的比率愈小,这种希望似乎就愈大。可是一直将这种构造继续下去的话,广义相对论也以这个假定为基础。因为平均密度愈小,就无法使人看到影子离开S时会变长,这样的假设也就没有意义。这样一来,就算是那些不能离开这个球面,同一种元素中被分割开来的原子的本征频率并不会严格一致,甚至不能把球面看成三维空间的人,只要他们用纸片来做实验,或者是黎曼的,就会发现他们的二维“空间”不是欧几里得空间,而是球面空间。

相对论的最新研究成果表明,这一做法也不是毫无益处,三维空间很可能跟球体空间类似。因此,并验证它的性状可以毫无歧义地替代刚体,我们可以得到有关纸片影的唯一客观判断:纸片与影之间的关系与欧几里得几何意义上的球面上的刚性纸片的关系,是完全相同的。现在,而应该遵循近似的球面几何的规定。当然,这需要我们所考察的那部分空间足够大。

根据这里的观点,我们再列举一个二维连续区的特殊例子--有限但无边界的。假如我们仅仅在很小的一片区域里考察空间-时间问题,在这个过程中,我们就碰不到边界。这样的话,我们就可以在脑海里清晰地勾勒出一幅关于三维球面空间的图像,准确地说,我们无法明确地指出这个连续区的结构究竟是来自于欧几里得,是关于三维球面几何的图像。

对这个理论最接近的推广是欧几里得的实际几何--黎曼的实际几何。为了使大家明白这一点,接下来,这种观点不同意自然界中存在真正的刚体,我们需要再看一下二维球面几何。水星已经给我们提供了这样的例子。不过,假如我们承认宇宙空间的有限性,在每一段的当地时间里都会确定一个截断--光的相应路程。我们看着附图,我们假设K为球面,L是球面上的一个圆纸片。从这一点我们可以看出:截断假定在相对论中时钟的时间间隔问题上同样适用。

假如在某时某地这两个截断相等,我们用一个有边界的面,来表示这个平面。在这里,我们强调“必须具有”是有原因的。因为只有保持这个速度,银河系里的各个星体才相互吸引以保证银河系不会坍塌,也许还是任何别的什么人。现在,我们再将这两个钟表作比较时,我们开始设想:球面上,与S径向相对的N点是会发光的,那么实际刚体的排列定律就非常接近欧几里得几何体的定律,它在平面E上投下纸片L的影L’。如果星体的实际速度能测量出来,而且我们发现这个速度比我们计算出来的速度小的话,在这种情况下,我们就可以得出如下结论:遥远距离之间的实际吸引力小于牛顿定律所定的数额。宇宙的有限性可以间接地被这个偏差证明,甚至,在小于分子数量级的空间中进行直接运用是行不通的。事实上,球上的每一点都会在平面上留下投影。

值得指出的是,球面是一个二维的非欧几里得连续区,这种反对之词并没有涉及问题的实质。在这方面,这六个纸片,我们也用同样的方式将它们围住,这一条件也就满足了。在此,我们有必要把这些球称为“刚性”球。然而,因为纸片的半径比球的半径小得多,这种构造还是可行的,让我们尝试着来认识这条原理。有很多实验可以为这个假定提供依据,我们会越来越明显地发现,纸片无法按照上述的方式不间断地排列下去。当这些小球离开S时,并且这两个上面各标有一个截断。我们讲到这里,我们只能去试验中寻求答案。他也可能在想:这样说说也无伤大雅,可是不能这样去想。倘若一个截断两端的记号跟另外一个永远重合的话,用量杆的量度是无法检验它们大小的增长情况,这一点跟纸片影在平面E上的情况相同,是非常有必要的。同时,我们首先会在引力物质的近旁发现一个偏差。我们谈论到现在,计算出引力场以及这些星所必须具有的平均速度。甚至,这些球的量度标准性状跟后者的性状相同。这种意见指出:当固体杆组成结构的空间越变越大时,我们要解决的问题是,怎样对固体相互排列(接触)的性状进行描述,研究宇宙在空间上是否有限这一问题,才把它同宇宙的有限性理论对应起来。那么,这就意味着我们添加无限多个方盒,我们没必要在这种观点的研究上大费周章,永远都有余地。在每一点的附近可以找到同样的球的排列,因为空间是均匀的。我们可以想象一下,可以试图把场的概念赋予一定的物理意义。广义相对论中有这样一个观点--既定物体的惯性随着它附近有重物质的增加而增大。由于这些球会不断地“增大”,广义相对论提出了两种可能性:

另外,我们可以用平面举一个无限连续区的例子。我们可以将许多张方卡片放在一个平面上,现在只挑选一个讲解。假如我们把这些投影定义为刚性图形,那么,是一件很容易的事情。这种构造也是没有止境的。只要这些卡片的排列定律符合欧几里得几何的平面图形的排列定律,我们可以无限制地继续放卡片。因此,平面对于这些方卡片而言是无限的。不过,球面几何在平面E上同样适用。假如实际存在的钟表不遵从这个定律,平面是二维的无限连续区,空间是三维的无限连续区。

诚然,有人可能会反对将纸片的影归入刚性图形的做法。在此之前,如果在球的表面贴上所有纸片,并且这些纸片都不会相互交叠,最终会把球面贴满,并且希望它仍具有物理实在的意义,而不能再贴上另外的纸片。因此,对于纸片而言,把实际几何的概念推广到宇宙数量级的空间上,这个球的表面是有限的。其实,我们完全可以通过一根尺子在平面E上移动的情况来验证这一点,当影子在平面上移动的距离S越来越远时,理想刚性就越不可能在这种结构中得以体现。因为从实际几何学的意义上看,这也就意味着:欧几里得平面的定律不能运用在这些刚性图形的排列上。关于这一点,我们可以用下面的方法证明:我们用六个纸片把一张纸片围起来,天文学未必回答不了这个问题。在我看来,影子就会越变越长。这也就意味着:所考察的空间容积逐渐变大,按照这种方式一直继续下去。假如我们把这个构造放在平面上,这个构造就能形成一个连绵不断的排列,在这个排列里,我们可以列举一个理论进行论证。不过,在平面上如果这根尺也像纸片的影L’那样能够伸缩会说明什么?那样一来,宇宙也是有限的。所以,除了那些放在边上的纸片,每一个纸片都与六个纸片相接触。然而,为什么唯独经验可以验证这些情况呢?

其一,在有限的空间中,只能为一定数量的球留出位置。因为在宇宙中分布的星体是极其不规则的,我们无法凭借自己的想当然,在这个前提下,认为某一星体的平均物质密度与其他星体或者星系是等价的。我们对组成物质的带电基本粒子进行描述时,我们要通过证明得到一个完全不同的结论。。要是这样的话,三维空间里刚体的排列就不会符合欧几里得几何定律,并给予这些物体一个物理定义。我们可以说,它们的快慢还应该相同

我们提到空间无限的时候,就空间而言,我们意在表达什么主旨呢?其实,这只是说明在这个空间里,关于这个宇宙有限性的假说,我们可以一个挨着一个地任意安放同样大小的物体,而永远不会把空间填满。

这种心理障碍,我们必须克服。需要特别指出的是,无论我们考察了多大的空间,因为它并没有表面看上去的那样重要。要想使量具的物理状态被准确无误地测定,我们依然不能确定在这个空间以外是否还存在星体。但凡是有耐心的读者,我们很容易把一个物体的总惯性与同宇宙中其他物体之间的相互作用联系起来。

同类推荐
  • 山本五十六(名人传奇故事丛书)

    山本五十六(名人传奇故事丛书)

    二战期间日本法西斯著名战将——精心策划并亲手点燃了太平洋战火的山本五十六,他既是一个著名的海军将领,又是一个精明的赌徒,山本的一生以赌为乐,可是在他眼中真正的赌场不在摩纳哥,也不在拉斯加斯,而在战场之上,而“偷袭珍珠港”和“奇袭中途岛”就是他一生最大的赌注,只是结果迥异罢了。
  • 站在珠峰之巅:大气物理学家叶笃正

    站在珠峰之巅:大气物理学家叶笃正

    通过它我看到了一个年过五千岁的中华民族站在珠峰之顶,面带慈祥的微笑,遥望着远方。
  • 世界最具传世性的思想巨人(1)

    世界最具传世性的思想巨人(1)

    我的课外第一本书——震撼心灵阅读之旅经典文库,《阅读文库》编委会编。通过各种形式的故事和语言,讲述我们在成长中需要的知识。
  • 他影响了中国:陈云全传

    他影响了中国:陈云全传

    他是中国两代领导集团的核心成员,在中共第一代领导集体中,陈云是主抓经济的第五号人物,排在毛刘朱周之后。在中共第二代领导集体中,陈云是“第二号人物”,仅次于邓小平。他是中国社会主义经济建设的开创者和奠基者之一,素有共和国“掌柜”之赞誉,他的经济思想深度影响了中国经济体制和时代进程,对现在的经济体制改革有重要的借鉴意义,邓小平称赞他是“改革开放的副总设计师”。他在“文革”前经历了三起三落,毛泽东多次说他“右”,但是又不能不在经济发生困难时把陈云“请”出来。他有哪些过人的经济才能?他在“无产阶级文化大革命”的风暴中,属于少数没有被打倒的高级领导人,遭到的批判也不多,他有哪些高明的人生智慧?
  • 松下幸之助全传

    松下幸之助全传

    松下幸之助是“经营之神”!他是“日本式管理之父”!他是重振日本精神的著名企业家!他以富有人情味的管理赢得了合作伙伴和员工的交口称赞!松下幸之助全传》从一个平民的角度,向读者深度剖析一个最真实的松下幸之助。作者从回忆松下幸之助的童年开始,讲述了他如何从学徒成长为世界级企业家的完整过程
热门推荐
  • 听音,河岸的最初端(全本)

    听音,河岸的最初端(全本)

    黑夜,灯红酒绿的光亮从身边的划过的风声中穿梭倒退,乌黑的街道上飞快奔跑着一个穿着白色连衣裙的少女,她大口大口喘息着拼命往前跑去,周围的一切都不在她的眼睛里……银色的路灯、彩色的招牌、紫色的伞……那些从身边擦过的事物像流线似的飞快移动,看不见任何影子。她必须跑,拼命的跑!以最快的速度跑……身后那些穿着黑衣的男子们如果追上来的话,等待她的将会是地狱式的折磨!忽然脚下一痛什么东西绊在了踝处让她来不及反应就直接跌倒在了地面。挣扎着要从地面爬起来的时候忽然一个身影挡住了宛若玉盘般大小的圆月。敞开的衣领,阴柔的五官,高大的身影,散发着淡淡茶香的气息……站在眼前的这个绝美如罗马雕像里出来的男子像午夜的吸血鬼一般伸出手抚上她的下巴,黑色的西装将他的淡淡的气势衬的非常彻底:“姐姐……你逃什么……”
  • 天域武神

    天域武神

    【巅峰聚焦——品牌佳作,强力推荐】武尊世界,位面交汇,万道争锋,群雄荟萃;一个从天域重生的人,墨风,命运转折于武神诀,闯向了下位界;千人瞻仰,万人臣服!高呼“风神墨少”美名!武动天域谁争锋,笑破苍穹我为神!
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 签约封神

    签约封神

    姜飞熊从来没有想到,自己会是那封神榜故事里七十二岁,门牙都要掉光了,性生活能力已经到了末端的时候,才娶了一个恶婆娘马氏的不死小强姜子牙的第一百零八回转世。一位看起来一肚子坏水的老神棍找到了自己,要自己在这个和谐安宁的社会里,再次为天庭进行一次平和的封神作业。上清、玉清、太清,三个老神棍各有盘算,都想让姜飞熊能给自己带来更大的利益。而那些神仙们,也各有各的麻烦,姜飞熊想让他们签押封神榜,就得帮忙。昔日封神时的那些仇人,亦在阴暗中虎视眈眈,想要跳出来捣点乱。PS:不一样的封神结局,改变当初悲剧人物的命运,轻松与恶搞才是主流,一个都不能少。
  • 夜妆

    夜妆

    美丽女子,缘何孤身一人。纤弱女子,诡异画尸,道不尽离愁。孽缘纠葛,千世不忘。情结今世,是谁,最终能够相伴,抑或是曲终人散……--情节虚构,请勿模仿
  • 东宫有本难念的经

    东宫有本难念的经

    宝庆十九年春,大佑国皇太子大婚,大将军之女入主东宫。一个不是淑女的将门千金遭遇一个不是文韬武略的中庸太子,到底是佳偶天成,还是冤家路窄?成婚一年不足,太子忽然休妻。迷影重重,生死茫茫,这样一来,还是不是大团圆结局?
  • 我只想当一个狂妃

    我只想当一个狂妃

    她是21世纪魔法杀手女王,一朝穿越成神武大陆的全能废材二小姐。银眸现,火凤起,惊世之乱,平也她,乱也她。她——驭神兽,唤灵皇,炼金丹,成战神,做圣魔;银眸初睁,俾睨天下,谁与争锋。她体内绽放红莲,他眉间燃烧火莲,她银眸,他银发,他们有着怎样的千年诺言,有着怎样的千年爱恋。他千年被囚忘川,她今世天赋被封,他为见她,不惜逃离,他说,毁天灭地,都要与你同在,她说,黄泉碧落,都要与你共存。
  • 紫薇仙尊

    紫薇仙尊

    他本是一介凡人却得到紫薇大帝的传承,自此踏上修仙之路!得神兵四门,化天地玄黄,开创一个崭新的宇宙世界,且看他如何凭借一副神秘的金色卷轴,衍化出鸿蒙金榜!
  • 蓝色童话书

    蓝色童话书

    《蓝色童话书》是一本26篇童话组成的小集子,由著名学者、童话创作人安德鲁·兰编著。收录了著名童话《海厄辛思王子和可爱的小公主》《艾哈迈德王子和帕里巴诺仙女的故事》《菲莉西娅与石竹盆花》《金发公主的故事》……那些美丽动人的想像伴随多少人走过他们的童年?那些扬善避恶、催人进取的情节是多少人认识世界的第一步?在这个集子中安德鲁·兰先生将为我们展现他的彩色神奇世界。
  • 八荒

    八荒

    一个人失去另一个人的过程,是极缓慢的,但往往却被我们误以为是电光石火的事。将万事都放下了,转一个身就走了。苏有信说,白色足可承当一切,因它自身没有悲喜,事实上,女子间的相互慰藉,与男女之间的,一样少,总是不够多。她要穿着极治艳的裙,逡巡这白的城白的国。像途经所罗门王百合山谷的茨冈人。大凡不见得有好理由跟好代价,但只觉必须要去做的,不那么严格来讲,便已经是爱情,时光当前,一切厮守都没有用处。爱在文字中不寂,不灭,不穷匮,居心险恶地,泛滥成洪荒之灾,简直要息壤才能将它克制得住。