登陆注册
3163700000002

第2章 激光之谜

本世纪50年代,无线电电子学飞速发展,为了探求产生更短的相干电磁波,1954年美国哥伦比亚大学的汤斯首次制成了氨分子微波激射器,由此打开了通向激光的道路。1960年世界第一台以红宝石为受激物体的激光器由美国物理学家梅曼研制成功。激光器的问世轰动了全美国,出现了光学物理的“文艺复兴”时代。激光的出现与发展,说要是靠从事电磁波谱学研究的学者们努力的结果,是相干电磁频谱向高频段发展的必然。它不仅是光学领域的伟大成就,更是电子学领域的伟大成就,激光为电子学的发展开创了一个崭新的局面。传统电子学的原理,借助光电、电光转换,用途遍及整个电子工程领域。

尽管目前激光技术还处于幼年时代,却已经为人类带来了几千种之多的各种激光发生器,有固体、气体、半导体、有机染料、化学、准分子、自由电子、巨脉冲等各种类型。目前激光器的波长从100埃至05毫米,最大连续功率达10万瓦,最大脉冲功率达10亿千瓦。

什么样的光是激光?简单地说,激光也是一种光。它与普通光,如太阳光、灯光一样也是一种电磁波。但是激光产生的方法与普通光不同,它是物质“受激”而产生的光。

1917年,爱因斯坦在统计平衡观点研究“黑体”辐射时,得到一条结论:“自然界有两种不同的发光方式。一种叫自发辐射,另一种中受激辐射”。各种各样的人造光源,例如电灯、日光灯等都属于自发辐射光。各种自然现象所发射出来的光,也都属于自发辐射。这些光都有一些共同之处,比如光线向四面八方射出,其中包含着各种各样的颜色。

激光是原子受激发射而辐射的一种光。激光是一种新型的光源,它和普通光源的区别在于发光的微观机制不同。普通光源的发光是以自发辐射为主,各个发光中心发出的光波无论方向、位相或者偏振态都各不相同。激光的发光则是以受激辐射为主,各个发光中心发出的光波都具有相同的频率、方向、偏振态和严格的位相关系。由于这些差别,激光具有强度高,单色性好、相干性好和方向性好等几个特点。

激光的亮度是高压氙灯亮度的37亿倍。激光领域是光频电子的范畴。激光器的出现,提供了光频波段的电磁振荡源。今天无线电子学概念、理论和技术原则上都可以延伸到光频波段。电子学进入了一个新的天地。电子学和光学之间鸿沟已经不复存在。光学本来是一门古老的物理学,而今由于激光的发现和应用,崛起了前途无量的光电子学。

激光在过去书中按英文译音为“莱塞”,意思是“光受激发射器”,1964年以后统称为“激光”。在一些介绍激光的书刊中还常提及一个技术名词叫做“简并度”,这是区别激光与普通光的一个技术指标。激光的简并度高达1017,而一般普通光线的简并度仅为千分之一。从电子技术角度看简并度低的光只是一片噪音,从光学角度看高简并度的光是具有高亮度的单色光。

激光从物理学上去看是电磁场,是整个电磁辐射的一个组成部分。爱因斯坦基于对电磁现象的研究,提出任何物体相互作用的传播速度都不能超过真空中的光速,每秒30万公里。

激光既然是“有质量”的电磁波,因此它与普通电磁波一样能够成为“载波”用以传播信息。但是激光在空中传播会受到许多因素的干扰,如它遇到云层、雾粒会造成严重信号衰落,遇到空气中的气流,会产生抖动、扩散等情况。因此如何避免干扰,保证传送质量是激光应用的一大关键。

1870年,美国物理学家丁达尔,在一次做流体实验时发现了一个有趣的现象,并从中受到了启发。他在一个盛满水的桶侧钻了一个小孔,水照例从小孔中喷射出来,这一现象原本不足为奇,但细心的丁达尔发现,水桶上方的灯光也随着小孔流出的水柱落在地面,竟然会出现一个光点。光应该是沿直线传播的,为什么会沿水柱的弧线传过来呢?经分析,这是因为水的光折射率比空气的光折射率大,光射到水和空气界面的时候,发生了全反射的原故。根据光的全反射原理,人们终于找到了理想的激光传输媒质——光导纤维。

1966年,有人曾预言“如果把玻璃中的铁离子控制在百万分之一以下,玻璃对光的损失可望达到一千米20dB”。这句话后半句的意思是,光可以每前进一千米,功率只下降百分之一。1970年美国克林玻璃公司发现了这一预言,他们完成了光导纤维技术上的重大突破,取得了光前进一米,功率损失降到一百亿分之一的光辉成就。

光纤维有完全不受电磁场干扰的特性,比如打雷的时候,不会出现干扰。石英做成的光纤维具有极高的绝缘性能,根本不用担心被雷电击穿。这对要求绝对可靠的全天候精密电子控制是非常有意义的。

制造光导纤维的材料石英,是从石英砂矿中提炼而来,这种资源对于由二氧化硅成份组成的地球来说,真可谓唾手可得、而且是取之不尽,用之不竭。

1904年,英国科学家瑞利在研究稀有气体氩的时候,看到一片神秘而迷人的深蓝色光,这一发现被瑞利称为瑞利散射。研究表明光凭借着比波长还微小的粒子散射于四面八方。瑞利散射与光波长有关,波长越短散射就越强大,当波长减少到一半时,瑞利散射的强度便会增强至16倍,而波长越长的光,瑞利散射强度则越弱。瑞利散射现象对于光的传播有十分重要的意义。

1961年4月12日,首次完成人类太空飞行壮举的前苏联太空飞行员加加林,当他从人造卫星“伏司托克”号的窗口探望地球时,看到的是一片深蓝色无比瑰丽的图景,他为之激动不已。解释这一现象的即是瑞利的散射现象,地球之所以呈现如此迷人的青蓝色,是地球外围大气中的氧与氩使太阳光中波长短的蓝紫光发现强烈散射的缘故。

人们都知道玻璃、水晶具有非常好的透光性,其实不然,在一般情况下,玻璃的主要成份是二氧化硅(SiO2)。我们常见的平板玻璃,玻璃瓶罐是含有氧化钠、氧化钙的钠玻璃,而透明度高的水晶玻璃仍掺杂有氧化铅物质,只有高纯度的石英才是理想的光学材料。但无论多么高纯的石英玻璃,在制造过程中仍然含有微量的金属和水。这些杂质会对光线有吸收,也就是说即使用这些高级的光学材料也会产生瑞利散射而对光的能量造成一定量的损失。

我们在商场很容易看到一种工艺品,是用一种透明的细丝材料做成的花束,这种花束的根部装有灯泡,在细丝纤维的尖端会发出金光,然而纤维的侧面一点光也没有泄漏。这个原理同样用于医疗上,可用以对胃肠等器官的疾病观察的胃镜等。

这种应用于传导光线的特殊纤维就是光导纤维,光纤维很细,其直径仅为3~10微米,越细越柔软。光在光纤维内的传播是以全反射的形式进行的,光纤维内传播的光波有别于自由空间的波,打个比方,光在光纤维中如蛇行一般。光在光纤维内传播的速度随光的波长而不同,当光的波长越大,频率越低时光就越难以通畅。因此在光电子学中也把光纤维看作一种阻止高频率光波通过的滤波器。

光纤维怎样才能把光传得远,又同时保证传送应有频带这是光纤维技术研究的主题。

光纤最早应用于微波无线和信号中心之间的相互连结。在本世纪70年代后期,卫星地面站就采用了光纤电缆替代同轴电缆。然而作为远程的光纤互连应用则于武器装备和军事通信中首开先河。

在军事通信系统中天线向外发射电波,这是最容易被敌方察觉的,一旦发觉随之而来的便是惨遭摧毁。为了有效地保护信号中心各种计算机等昂贵的高级通信设施,目前所采取的有效对策是将天线与信号中心分离开相距1~3公里,以保障信号中心的安全。按传统的办法采用同轴电缆完成远程互连有许多问题很难解决,且不说要耗费大量同轴电缆与同轴电线配套的放大器,还会导致信号噪声,给可靠性带来不良因素。在运输上由于同轴电线重量较重也很不便,特别是同轴电缆易遭雷电破坏。用光纤代替同轴电缆,可以直接在较高的频率范围内工作,同时损耗极低,因此完全不需要线路放大器,从而解决了传输噪声,提高了可靠性。光纤具有的高绝缘特性使天线不怕雷电袭击。

在军用通信中,首先应用光纤网路远程装置,是在1980年由美国空军建立的AN/GRC206无线电系统。此后许多雷达系统也采用了远程光纤的互连。如新型对空“小猪犬”导弹系统就是采用光纤来互连的。

激光的每一个特点都可以引带出一些应用,正是这些应用才使激光被列为新技术革命的主要特征之一。激光技术是当今一项极富有魅力的新技术。

同类推荐
  • 海洋馆漫游:海洋知识浏览

    海洋馆漫游:海洋知识浏览

    海洋是一个富饶而未充分开发的自然资源宝库。海洋自然资源包括海域(海洋空间)资源、海洋生物资源、海洋能源、海洋矿产资源、海洋旅游资源、海水资源等。这一切都等待着我们去发现、去开采。青少年认真学习海洋知识,不仅能为未来开发海洋及早储备知识,还能海洋研究事业做出应有的贡献。
  • 必谈的军事之谜

    必谈的军事之谜

    军事是一个国家和民族强大和稳定的象征,在国家生活中具有举足轻重的作用。国家兴亡,匹夫有责,全面而系统地掌握军事知识,是我们每一个人光荣的责任和义务,也是我们进行国防教育的主要内容。
  • 寻找尼斯湖水怪大冒险(科学大探险)

    寻找尼斯湖水怪大冒险(科学大探险)

    来自二十三世纪的小朋友,带着他的宠物猪寻找尼斯湖水怪!他们来到了苏格兰去尼斯湖探险。他们采用守株待兔的方法还潜入了水底,陷入了淤泥、遇到了鳄鱼的追赶……这几个小朋友到底还会遇到多少危险,能不能找到尼斯湖水怪呢?
  • 自然百科知识博览

    自然百科知识博览

    《巅峰阅读文库 我的第一本百科书:自然百科知识博览》精美的图片,有趣的文字,活泼的版式,将科学性和趣味性完美地结合在一起。让我们一同领略和感受知识带给我们的快乐。《巅峰阅读文库 我的第一本百科书:自然百科知识博览》内容包罗万象,形式丰富多彩。它既是人们认识世界、感知历史、触摸时空和超越未来的组合工具。又是聆听历史和探索未来的一条捷径,同时也是家长引领孩子成长的教育指南。
  • 神奇的世界

    神奇的世界

    人们在生活中总会遇到各种各样的神奇现象,而实际上,这些现象不仅仅限于人们在生活中所遇到的这些,在一些人们没有接触到的领域,神奇的现象同样存在。本书从灾难、生活、亲缘、灵异、预言、历史等八个方面向读者结介绍了古今中外各种神奇的现象,一则则生动有趣的小故事,让读者在轻松的阅读中,从另一种角度了解神秘的大千世界。
热门推荐
  • 秦时明月之烟尘梦

    秦时明月之烟尘梦

    你转身回眸那满目星河,可是对脚下山河岁月沧桑的垂怜? 春风渡山外,古巷绿杨青,可目送你两袖清风归去的背影? 履屦踏古道,拂柳送归人,只怕时过境迁凋零的韶华,漫漫远去洗去故人思…… 烟尘梦:乱世干戈缘自空,浮华转瞬皆尘梦。[书群:515604192,群名:秦时明月|九歌素华]
  • 玄天至尊

    玄天至尊

    众人的追杀,天生白痴的他。成就威名。且看白痴小子如何开启异世之旅,成玄天至尊!,得散仙一缕残魂,又有半仙器级的储物芥子。九岁时一夜间恢复神智,被形式所逼,卷进大陆纷争
  • 母妃快跑,父王杀来了

    母妃快跑,父王杀来了

    男人对她视而不见,冷声吩咐道:“必要时保住孩子。”【五年后】两人再度相遇,她已不是从前的那个卑微求爱的女子,但男人依旧高高在上:“倘若你乖乖撤兵,“你有没有爱过我?”快要临盆,孤王便给你一次机会。”“父皇,排练的时候你不是这么说的。她拉住男人的衣襟忍痛问道。”一个可爱的小男孩从背后探出头。“死小子,闭嘴!”男人面露难堪的低吓道
  • 美人夫君,欺上娘子!(完)

    美人夫君,欺上娘子!(完)

    她,苏唯一,青昭国护国大将军之女,竟迷迷糊糊在一夜间嫁作他人妻?!※可你说嫁人就嫁人吧,应该是华丽的新房吧,怎么变成在这荒无人烟的破茅草屋?夫君就夫君吧,怎么弄了个比她还美的男人?凑合着也过吧,不过这一拨一拨的人是怎么回事?一会儿来个皇上,一会儿来个千金,一会儿来个花魁,深情款款表明爱意,不过对象竟是她那美人夫君?※可从什么时候起,她也变得这么受“欢迎”了?一个死妖孽对她使美男计,但她偏偏就吃这一套;一个短命王爷舍命相待,令她难以忘怀;一个温柔师兄施展柔情政策,令她深感温暖;一个阴险皇子霸道地独占,令她难以招架!……可当那一切不再时,他可曾还记得对她说过的誓言?弱水三千,他是否又会想起曾经的那个她呢?
  • 千金归来

    千金归来

    新文:《独家占爱》http://m.pgsk.com/a/965379/《心战》:http://m.pgsk.com/a/935694/*林纾偷偷爱上一个人,从十六岁那年,父亲将他带回家的那一天起。陆恒是个穷小子,依附着林家存活,她跪着求父亲:爸爸,我要嫁给他!父亲说:小树,你总有一天会后悔!陆恒说:小树,我一定会让你幸福!她相信陆恒,成为他最美的新娘,新婚之夜却眼睁睁看他携温柔女子在侧:她才是我的爱人!父亲被陆恒送进监狱,他却悠然自得地坐拥林氏帝国,俯瞰睥睨。*林纾被陆恒送进精神病医院,终日与疯子傻子为伍,曾经对他有多爱现在就有多恨!一个月之后,她怀上身孕!而新婚之夜她根本就不曾和陆恒接触!她坚决要保护孩子,拒绝任何注射,真的变成了别人眼中的疯子!*盛维庭来到这家精神病医院完全是一个意外,因为他出来遛狗却迷路了!于是,他遇见了林纾。她比所有的患者都更像疯子,却让他救她。他从来都不是心软的人,却偏偏为了她站出来,原因只有一个——身为最年轻的神经外科教授以及别人眼中的专家医生,他认定她的孩子是他的。他傲气凛然地说:你们谁敢关着我的女人!林纾就这样跟着他大摇大摆地离开,莫名其妙地成为他的妻子,他的“女人”。和陆恒狭路相逢,她被羞辱得一塌糊涂,盛维庭只懒洋洋说一句:我们不要和低智商的人讲话。他淡然,傲娇,时不时会耍小脾气,他是她林纾的丈夫。*当陆恒被心爱的女人背叛,发现原来还是他的小树最爱他的时候,林纾还给他的是夺回她的林氏帝国,居高临下地对他说:杀了你都不够解恨!~~~~~~~推荐闺蜜苏沐梓的不容错过的闺密文《岱音与和溪》:http://m.pgsk.com/a/928555/m.pgsk.com
  • 亿万千金逆袭战

    亿万千金逆袭战

    简介:她年仅十四岁,来自近乎与世隔绝的小山村,失散多年的亲生父亲病逝,留下千亿遗产,她能否由一个一无所有的小村姑,摇身变成中国最富有的亿万千金,她能否在所谓“亲情”的围攻中顺利突围。
  • 中国未解之谜全知道

    中国未解之谜全知道

    《中国未解之谜全知道》综合了大量历史、地理、科研文献资料,以全面、全新、探索的视角,从帝王、文臣、武将、文人、红颜、政治、经济、文化等近20个方面,甄选600多个重大的历史事件,经由深刻精确的分析,力求达到去伪存真,求得事实的真相,解读历史的规则。
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 死亡传说:粉骷髅之恋

    死亡传说:粉骷髅之恋

    我是一个普通的女人,几百年后是一具没有肉体,没有灵魂的粉骷髅。有一天,我的灵魂觉醒了,在与人类的接触中,我发觉,我爱上了一个人类的男人。被光明视为邪恶的我是选择黑暗的永生?还是选择也许没有结果的爱情?
  • 街市

    街市

    甫跃辉, 1984年生,云南保山施甸县人,复旦大学首届文学写作专业小说方向研究生毕业,师从作家王安忆。在《人民文学》《大家》《花城》《中国作家》《青年文学》《上海文学》《长城》等文学期刊发表中国短篇小说。获得2009年度“中环”杯《上海文学》短篇小说新人奖。