登陆注册
2379700000004

第4章 数学之谜(4)

除了素数定理还有待探索之外,(1)中余项R的估计也是一个很难的问题,有不少人在研究它。

魅力无穷的完全数之谜

公元前3世纪时,古希腊数学家对数字情有独钟。他们在对数的因数分解中,发现了引起奇妙的性质,如有的数的真因数之和彼此相等,于是诞生了亲和数;而有的真因数之和居然等于自身,于是发现了完全数。6是人们最先认识的完全数。

1.发现完全教

研究数字的先师毕达哥拉斯发现6的真因数1、2、3之和还等于6,他十分感兴趣地说:“6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身。”

古希腊哲学家柏拉图在他的《共和国》一书中提出了完全数的概念。

约公元前300年,几何大师欧几里得在他的巨著《几何原本》第九章最后一个命题首次给出了录找完全数的方法,被誉为欧几里得定理:“如果2“-1是一个素数,那么自然数2(上标2n-1)(2(上标n)-1)一定是一个完全数。”并给出了证明。

公元1世纪,毕达哥拉斯学派成员、古希腊著名数学家尼可马修斯在他的数论专著《算术入门》一书中,正确地给出了6、28、496、8128这四个完全数,并且通俗地复述了欧几里得寻找完全数的定理及其证明。他还将自然数划分为三类:富裕数、不足数和完全数,其意义分别是小于、大于和等于所有真因数之和。

2.神秘的第五个完全数

完全数在古希腊诞生后,吸引着众多数家和数学爱好者像淘金般去寻找。可是,一代又一代人付出了无数的心血,第五个完全数没人找到。

后来,由于欧洲不断进行战争希腊、罗马科学逐渐衰退。一些优秀的科学家带着他们的成果和智慧纷纷逃到阿拉伯、印度、意大利等国,从此,希腊、罗马文明一蹶不振。

直到1202年才出现一线曙光。意大利的斐波那契,青年时随父游历古代文明的希腊、埃及、阿拉伯等地区,学到了不少数学知识。他才华横溢,回国后潜心研究所搜集的数学,写出了名著《算盘书》,成为13世纪在欧洲传播东方文化和系统将东方数学介绍到西方的第一个人,并且成为西方文艺复兴前夜的数学启明星。斐波那契没有放过完全数的研究,他经过推算宣布找到了一个寻找安全数的有效法则,可惜没有人共鸣,成为过眼烟云。

光阴似箭,1460年,还当人们迷惘之际,有人偶然发现在一位无名氏的手稿中,竟神秘地给出了第五个完全数33550336。这比起第四个完全数8128大了4000多倍。跨度如此之大,在计算落后的古代可想发现者之艰辛了,但是,手稿里没有说明他用什么方法得到的,又没有公布自己的姓名,这更使人迷惑不解了。

3.不平凡的研究历程

在无名氏成果鼓励下,15至19世纪是研究完数不平凡的日子,其中17世纪出现了小高潮。

16世纪意大利数学家塔塔利亚小时曾被法国入侵者用刀砍伤舌头,落下了口吃的疾患,后来靠自学成为一位著名数学家。他研究发现:当n=2和n=3至39的奇数时,2(上标n)-1(2(上标n)-1)是完全数。

17世纪“神数术”大师庞格斯在一本洋洋700页的巨著《数的玄学》中,一口气列出了28个所谓“完全数”,他是在塔塔利亚给出的20个的基础上补充了8个。可惜两人都没有给出证明和运算过程,后人发现其中有许多是错误的。

1963年,数学家克特迪历尽艰辛终于证明了无名氏手稿中第五个完全数是正确的,同时他还正确地发现了第六个和第七个完全数2(上标16)(2(上标17)-1)和2(上标18)(2(上标19)-1),但他又错误地认为2(上标22)(2(上标23))-1、2(上标28)(2(上标29)-1)和2(上标36)(2(上标37)-1)也是完全数。这三个数后来被大数家费马和欧拉否定了。

1644年,法国神甫兼大数家梅森指出,庞格斯给出的28个“完全数”中,只有8个是正确的,即当n=2,3,5,7,13,17,19,31时,2(上标n-1)(2(上标n)-1)是完全数,同时又增加了n=67,127和257。

在未证明的情况下他武断地说:当n≤257时,只有这11个完全数。这就是著名的“梅森猜测”

“梅森猜测”吸引了许多人的研究,哥德巴赫认为是对的;微积分发现者之一的德国莱布尼兹也认为是对的。他们低估了完全数的难度。

1730年,被称为世界四大数家雄狮之一的欧拉,时年23岁,正值风华正茂。他出手不凡,给出了一个出色的定理:“每一个偶完全数都是形如2(上标n-1)(2(上标n)-1)的自然数,其中n是素数,2(上标n)-1也是素数”,并给出了他一直没有发表的证明。这是欧几里得定理的逆理。有了欧几里得与欧拉两个互逆定理,公式2(上标n-1)(2n-1)成为判断一个偶数是不是完全数的充要条件了。

欧拉研究“梅森猜想”后指出:我冒险断言:每一个小于50的素数,甚至小于100的素数,使2(上标n-1)(2(上标n)-1)是完全数的仅有n取3,5,7,13,17,19,31,41,47,我以一个优美的定理出发得到了这些结果,我自信它们具有真实性。”1772年,欧拉因过度拼命研究双目已经失明了,但他仍未停止研究,他在致瑞士数家丹尼尔的一封信中说:“我已经心算证明n=31时2(上标20)(2(上标31)-1)是第8个完全数。”同时,他发现他过去认为n=41和n=47时是完全数是错误的。

欧拉定理和他发现的第8个完全数的方法。使完全数的研究发生了深刻变化,可是,人们仍不能彻底解决“梅森猜测”。

1876年法国数学家鲁卡斯创立了一种检验素数的新方法,证明n=127时确实是一个完全数,这使“梅森猜测”之一变成事实,鲁卡斯的新办法给研究完全数者带来一机,同时也动摇了“梅森猜测”。因数家借助他的方法发现猜测中n=67,n=257时不是完全数。

在以后1883—1931年的48年间,数学家发现“梅森猜测”中n≤257范围内漏掉了n=61,89,107时的三个完全数。

至此,人们前赴后继,不断另辟新路径,创造新方法,用笔算纸录,耗时两千多年,共找到12个完全数,即n=2,3,5,7,13,17,19,31,61,89,107,127时,2(上标n-1)(2(上标n)-1)是完全数。

笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完全人亦非易事。”

历史证明了他的预言。

从1992年开始,人们借助高性能计算机发现完全数,至1986年才找到18个,多么可怜!

4.等待揭穿之谜

迄今为止,发现的30个完全数,统统都是偶数,于是,数学家提出猜测:存不存在奇数完全数。

1633年11月,法国数学家笛卡尔结梅森一封信中,首次开创奇数完全数的研究,他认为每一奇完全数必具有PQ(上标2)的形式,其中P是素数,并声称不久他会找到,可不仅直到他死时未能找到,而且至今,没有任何一个数学家发现一个奇完全数。这成为世界数论又一大难题。

虽然,谁也不知道它们是否存在,但经过一代又一代数学家研究计算,有一点是明确的。那就是如果存在一个奇完全数的话,那么它一定是非常大的。

有多大呢?远的不说,当代大数学家奥尔检查过要10(上标18)以下自然数,没有一个奇完全数;1967年,塔克曼宣布,如果奇完全数存在,它必须大于10(上标36),这是一个37位数;1972年,有人证明它必大于10(上标50),1982年,有人证明,它必须大于10(上标120);……这种难于捉摸的奇完全数也许可能有,但它实在太大,以至超出了人们能够用计算机计算的范围了。

对奇完全数是否存在,产生如此多的估计,也是数学界的一大奇闻!

关于完全数还有许多待揭之谜,比如:完全数之间有什么关系?完全数是有限还是无穷多个!存在不存在奇完全数?

人们还发现完全数的一个奇妙现象,把一个完全数的各位数字加起来得到一个数,再把这个数的各位数字加起来,又得到一个数,一直这样做下去,结果一定是1。例如,对于28,2+8=10,1+0=1;对于496有,4+9+6。19,1+9=10,1+0=1等等。这一现象,对除6外的所有完全数是否成立?

以上这些难题,与其他数学难题一样,有待人们去攻克。尽管我们现在还看不到完全数的实际用处,但它反映了自然数的某些基本规律。探索自然规律,揭开科学上的未知之谜,正是科学追求的目标。

经典趣昧名题

1.奇妙而重要的数列

由于研究兔子繁殖问题,引出了一个极为奇妙而重要的数列。

有位养兔专业户想知道兔子繁殖的规律,于是他围了一个栅栏把一对刚出生的小兔子关在里面。已知一对小兔子出生后两个月就开始生兔子,以后则每月可再生一对,假如不发生伤亡现象,满一年时,栅栏内有几对兔子呢?

2.《镜花缘》里的数学难题

著名小说《镜花缘》里有段故事:

元宵节,宗伯府的女主人卞宝云想考一考精通筹算的才女米兰芬,请她算一算楼房中灯的数目。她告诉米兰芬,楼上的灯有两种,一种上做三个大球,下缀六个小球,计大小球九个为一灯;另一种上做三个大球,下缀18个小球,计大小球21个为一灯。大灯球共396个,小灯球共1440个。楼下的灯也分两种,一种一个大球,下缀两个小球;另一种是一个大球,下缀四个小球,大灯球共360个,小灯球共1200个。她请米兰芬算一算楼上楼下四种灯各有多少个。米兰芬想了一想。先算楼下的,她将小灯球1200折半,得600,再减去大灯球360,得240,这是一大四小灯球的灯的盏数。然后用360减240,得120,这便是一大二小灯球的灯的盏数。再算楼上的,她先将1440折半,得720,减大灯球396,余324,再除以6,得54,这是缀十八个小球灯的灯的盏数。然后用3乘以54,得162,用396减162,得234,用234除以3得78,即下缀六个小球灯的灯78盏。卞宝云让人拿做灯的单子来念,果然丝毫不差。大家莫不称她为神算。

这个问题若引进未知数列出方程是很容易解决的。但米兰芬的神算法是从哪里来的呢?应该说,故事人物米兰芬是读了著名古书《孙子算经》。

《孙子算经》是我国古代一部较为普及的数学著作,在唐代初期用作“算学”的教科书。全书共分三卷,上卷叙述筹算的制度、方法和度量衡的单位;中卷举例说明筹算分数法,包括面积、体积、等比数列等计算题、应用题;下卷收集了不少有趣的名题、难题。书中对各种问题的解法很有特色,充分显示了中国筹算数学的特点。例如,下卷第31题是:

“今有鸡兔同笼,上有35头,下有94足,问鸡、兔各几何?”

对于“鸡兔同笼”问题,读者还可想出各种解法。例如,可以设想鸡、兔都是两只足,那么从35个头可知,应该只有70只足,但现在笼中实有94只足,两者相差24只,这是因为我们设想兔子只有两只足,每只少算两足,可见兔子数是12只。

“鸡兔同笼”问题是算术中一类典型问题,历代“算学”课本大都引用此题,但题目与解法不尽一样。例如,在元代的著作《丁巨算法》一书中,原题变成:

今有鸡兔100,共足272只,问鸡、兔各几何?

书中先设想全部是兔,那么100只兔该有400只足,但现在实际只有272只足,两者相差400—272=128只,这是把鸡设想当作兔时多计算的足数。每只鸡多算两足,可见鸡数就是128的一半,即64只;兔数为36只。

《孙子算经》对我国及一些外国的数学发展都有一定的影响。“鸡兔同笼”问题传到日本,变成了“鹤龟算”,改成这名词可能是因为日本人特别欣赏乌龟的缘故。

3.1分钱换10万元

从前国外有个贪财的大富翁,虽然已非常有钱,可是每天还在盘算着如何得到更多的钱。

一天,富翁在路上遇到一个衣着俭朴的年轻人,他连眼皮也没眨一下,就走了过去,年轻人自言自语地说:“1分钱换10万元总会有人干的……”富翁一听,急忙回头叫住年轻人:“喂,你说的换钱是怎么回事?”

年轻人很有礼貌地一鞠躬说:“先生,是这样的,我可以在一个月内,每天给你送来10万元钱,虽然不是白给,但是代价是微不足道的,第一天只要你付我1分钱。”

“1分钱?”富翁简直不敢相信自己的耳朵。

“对,是1分钱。”年轻人说,“第二天再给你10万元时,你要付两分钱。”

富翁急切地问:“以后呢?”

“第三天,付4分钱;第四天,付8分钱……以后每天付给我的钱数都要比前一天多一倍。”

“还有什么附加条件呢?”

“就这些,但我们俩都必须遵守协定,谁也不准反悔!”于是,两人签订了协定。

10万元换几分钱!真是难得的好事!富翁满回答应:“好!就这样。”

第二天一清早,年轻人准时到来,他说:“先生,我把10万元送来了。”随即从大口袋里掏出整整10万元,并对富翁说:“下面该你付钱了。”

富翁掏出一分钱放在桌子上,陌生人看了看,满意地放入衣袋说:“明天见。”说完走出门去。

10万元钱从天而降!天下最大的便宜事叫富翁遇上了,他赶忙把钱藏了起来。

第二天早晨,年轻人又来了,他拿出10万元,收下两分钱,临走时说:“明天请准备好4分钱。”

第二个10万元又到手了!富翁乐得手舞足蹈,心想这个年轻人又蠢又怪!世上这样的人要是多几个多好,我们这些聪明人就会发了还要发,变成举世无双的大富豪了。

第三天,年轻人用10万元换走了4分钱。

第四天换走8分钱,以后又是1角6分、3角2分、6角4分,七天过去了,富翁白白收入70万元,而付出的仅仅是1元2角7分,富翁真想把期限再延长些,哪怕多半个月也好呀!

年轻人照常每天送10万元来,第8天付给他1元2角8分,第9天付2元5角6分,第10天付5元1角2分,第11天付10元2角4分,第12天付20元4角8分,第13天付40元9角6分,第14天付81元9角2分。

14天过去了,富翁已经收入整整140万元,而付出的才150元多一点。

又过了一段时间,富翁慢慢感到年轻人并不那么简单了,换钱也不像最初想象地那样合算了,15天后,每收入10万元,付出的已是几百元了,不过,总的来说还是收入的多,支出的少。

可是,随着天数的增加,支出在飞速地增大,纯收入在逐日减少,第25天,富翁支出167772元1角6分,第一次超过了收入;第26天支出335544元3角2分,大大超过了收入;到了第30天支出竟达5368709元1角2分。

年轻人最后一次离开时,富翁连续算了一昼夜,终于发现:为了收入330万元,他付出了。10737418元2角3分,亏了近800万元,富翁失算了!

同类推荐
  • 凉开水可以养鱼吗:最不起眼的大学问

    凉开水可以养鱼吗:最不起眼的大学问

    《凉水里可以养鱼吗:最不起眼的大学问》对生活中的常见的小问题、小现象加以剖析,深入浅出地讲解其中蕴含的科学道理,让你通过《凉水里可以养鱼吗:最不起眼的大学问》体会到生活窍门和科学知识的无处不在,并进一步被它们的魅力所吸引,让你学会自主发现身边的科学与生活中的学问,变得更加善于学习和思考,更加热爱生活。
  • 每天学一点管理·文学·哲学

    每天学一点管理·文学·哲学

    这些常识的讲述以知识结合故事为主,重点在以轻松活泼的方式将学科常识经过梳理、选择、确立后分不同角度撰写。每小节的常识点1500字左右,使我们在轻松阅读中获得最精良的文化滋养。
  • 增广贤文(国学启蒙书系列)

    增广贤文(国学启蒙书系列)

    本书采用活泼插图的表现方式,编选相关的精彩故事,融知识性与趣味性于一体,让青少年在诵读中轻松快乐地亲近《增广贤文》,更直观、真切地感受《增广贤文》的魅力,在阅读中积淀文化底蕴,培养良好道德品质,从而受益一生。
  • 地外生命探索

    地外生命探索

    本书讲解的主要内容为神秘现象,在资料客观翔实的基础上,也进行了大胆假设和小心求证,也许其中的观点并不能为读者接受,但是能引起广大读者的兴趣就已经达到目的了。
  • 使孩子心灵健康的108个好故事

    使孩子心灵健康的108个好故事

    本书可以让孩子在阅读故事的同时,从这些简短的故事中获取人生的智慧:遇到困难要坚强勇敢,世上无难事只怕有心人;只要开动脑筋想办法,就能迎刃而解;做错了事情要敢于承担责任并及时改正;做一个诚实的好孩子;对待同学和朋友要真诚友善、团结友爱、互相帮助、相互关心。一本好的故事书,使孩子们懂得无数受益终生的道理。
热门推荐
  • 坐拥奸臣好辰景

    坐拥奸臣好辰景

    【新书《工作好辛苦》已经上传。。期待大家领养】不做修士做凡人。不做良民做奸臣。【仙侠+朝廷】朝廷上,有的人走了,他还留着;战场上,有的人死了,他还活着;阴谋中,有的人残了,他还站着;于是,很多人哭了,他面无表情的看着。【求票和收藏哦O(∩_∩)O~】历经风雨只看见残虹。宋璟抄着手淡定的觉悟了,无论是天生妖孽,冷酷正太,温柔王爷,忧郁少爷还是偏执疯子,对付他们,阴狠腹黑才是王道。本文多CP~~~此文……慢热^_^小虐怡情,大虐伤身~~方便滴话请在书评区留下爪印~~给小浅一些鼓励吧~~
  • 明治天皇:孝明帝驾崩卷(下册)

    明治天皇:孝明帝驾崩卷(下册)

    《明治天皇》再现了日本从幕末走向明治维新的历史变革,以优美的文笔,宏大的场景,详细描绘了日本近代决定国运的倒幕运动的整个过程。本书塑造了一个个鲜活的日本近代史人物形象,以及他们的坚定信念,对“安政大狱”、“樱田门之变”等重大历史事件的描述详实生动,是一部了解近代日本不可多得的佳作。
  • 乱世至尊:笑揽江山雪

    乱世至尊:笑揽江山雪

    前一世,他是测谎专家,看透世人虚情假意,唯一信任的只有自己能抓在手里的一切;这一世,他是异世大陆上不受尊宠的世子,有着异于常人的血脉却天生体弱多病,权谋算计,赌命猜心,剑挑五洲,所向披靡,下得皇权,上窥天机。且看他如何逆转命运,独步天下,披靡众生,笑傲称神。
  • 东宫有本难念的经

    东宫有本难念的经

    宝庆十九年春,大佑国皇太子大婚,大将军之女入主东宫。一个不是淑女的将门千金遭遇一个不是文韬武略的中庸太子,到底是佳偶天成,还是冤家路窄?成婚一年不足,太子忽然休妻。迷影重重,生死茫茫,这样一来,还是不是大团圆结局?
  • 影响中国学生的经典成语故事之三

    影响中国学生的经典成语故事之三

    成语是语言中经过长期使用、锤炼而形成的固定短语,它是比词的含义更丰富而语法功能又相当于词的语言单位,而且富有深刻的思想内涵,简短精辟易记易用。并常常附带有感情色彩,包括贬义和褒义,当然,也有中性的。“影响中国学生的经典成语故事”汇集了众多的成语,详细地讲解了其释义及相关出处,使读者在增长知识的基础上、享受阅读带来的乐趣。
  • 仙路芳华

    仙路芳华

    侍女:小主,姑爷靠不住,怎么办?含笑:把他甩了!侍卫:主子,隔壁那山头欺负上门了,怎么办?含笑:给我欺压回去!水瑄:娘,那个男人还在找我们,怎么办?含笑:把他灭了!想好好嫁人过日子,结果老公发疯杀子;想带儿女自己过自己的,结果邻居瞧不起孤儿寡母;想发展二度桃花,结果前夫又来纠缠搞破坏;丫的,姑奶奶不发威,你们就当姑奶奶是兔子;星光,给我斩!!!且看世俗名门贵女如何斩断荆棘,踏上问道修仙路;遨游各界,一路风华;---------------------------恍恍这是第一次写文,亲们有意见的尽管提;不过亲们喜欢什么类型的男主主啊?
  • 发明魔术师:爱迪生(创造历史的风云人物)

    发明魔术师:爱迪生(创造历史的风云人物)

    名人创造了历史,名人改写了历史,那些走在时代最前列、深深影响和推动了历史进程的名人永远会被广大人民所拥戴、所尊重、所铭记。古往今来,有多少中外名人不断地涌现在人们的目光里,这些出类拔萃、彪炳千古、流芳百世的名人中,有家国天下的政治家,有叱咤风云的军事家,有超乎凡人的思想家,有妙笔生花的文学家,有造福人类的科学家,有想象非凡的艺术家……他们永远不会被人们忘记!
  • 穿越未成妃:魅惑天下

    穿越未成妃:魅惑天下

    做了多年孤儿的我终于穿了,别人不是公主就是小姐,再不济也是青楼一展抱负。可我……偏偏我就成了囚徒?还是刚出世的囚徒!!我知道自己一向很背,但没想过居然这么背!!年仅六岁不驯的皇子居然出现在牢中,我才发现这并不是什么正规的衙门牢笼……我要出去!!!———————每日7更)
  • 每天一个心理技巧

    每天一个心理技巧

    逃避、嫉妒、紧张、焦虑、抑郁、浮躁、愤怒等坏情绪时时刻刻隐藏在我们身边。它们爆发的那一刻,受折磨的不仅仅是你发泄的对象,最大的受害者是你自己。这些坏情绪会带给你焦躁,让你的生活变得混乱,而且会给健康埋下很大隐患。为了减轻这些不良情绪对生活的影响,请你试着把本书放在枕边,在闲暇或苦闷的时候,打开它,它可以帮助你更好地认识自己的内心世界,发掘自身的心灵潜力,永葆身心的健康!
  • 穿越千年:凤鬟雾鬓

    穿越千年:凤鬟雾鬓

    她出生在碧桃花开之际,夕阳如血,映耀在滴血般娇红的花海中,碧桃花语:红颜命薄!注定了她一生坎坷,一世纠缠。当她换回女装,披上一身艳红之时,红颜命薄的诅咒也已降临。当红颜啼血,白发毕现之时,是谁拥她在怀?是谁令她肝肠寸断?一个白衣翩翩的浊世佳公子、一个黑衣绰然的绝世英雄,一个冷酷绝情的乱世枭雄,一个柔情似水的痴情剑客,究竟谁才是她最后的归属?